ED $280 \quad 432$
Tite
INSTYTUTION
REPORT NO
PUB DATE NOTE
PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

 Edítion.
Hawaíi Staté Depí. óf Education; Honolulu. Office of instructional Services.
RS-86-9863
Jun 86
205 p .
Guides - eiásscoom use - Guides (for Teachers) (052) - Computē prōgrams (ioi) -- Reports - Descriptive (141)

MFOi/PC09 Pius Postage.
Business education; Ciassífication; Computer Graphics; *computér idēeracy; Computer science
 Ethics; *Learning Activities; Mathematices Instruction; *Microcomputers; *programing; programirig Languages; Resource Materials; Sēcondáry education; State Curriculum Guides; 天Teaching Méthods * $\overline{B A S I C}$ Programing Language

ABSTRACT

This guide is designed to provide teachers with guidelinés and suggested activities for teaching a one-semester advanced programing course=-BASIC Programming II=for the ninth through twelfth grades. Although primarily oriented toward màthematics, the guide does offer sample applications in business that also addrēss the needs of students with a variety of academic backgrounds. Intended to sérve ás a framework of goals and activities upon which the tēacher can organize, build, and expand his or her course, the guide provides a coursé description, course requirements, a course outline, à syllabus, cours̄e management considerations, samplé activitiés and programs, ànd s’iggestēd résources. The activitiés include tēaching strategies for introducing concepts, developing specific skills, or rēinforcing previously leãrned aspects of BASIC. Topics covered include a Reviē of Hááaware/Software Considerations, Structured Programming via Subroutines, Subscripted Variables and Problem-Solving Strategies, BASIC Functions and Graphics, File Handing and Term Project, Data Structures, and Computer Ethics and Impact on Society. A taxonomy of goals, objectives, and student expectations is appended; as well as samples of forms for use with the course, a description of a motivation technique, ASCII codes, and lists of recommended textbooks; teaching aids and references, software, and audiovisual materials. (DJR)

[^0]

The Honorable George R. Árlyoshi Governor. State of Hawall

BOARD OF EDUCATTION
Randal Yoshidá Chāirperson
S̄herwood M. Flara, Fi-st Vice-Chairperson Charless Nöwōod, Second Vicee-Chairperson

Rev. Darrow L K. Aiona	Ronald Nakano
Märgaret K. Apo	Johiri R. Penebacker
Mako Araki	Akira Sakima
Dr. Hatsüko F. Kawahara	Meyer in Ueoka
Michael Matsuda	William ' K. Waters

Bartholomew A. Kane. State Librarian
Cläùdia Chiuñ, Ássistänt Superintendent Office of instructional Services

Vernon \bar{H}. Honda. Assistant Superintendent Office of Business Services

Albert Yoshiii, Assistant Superintendent Office of Personnel Services

Williām Ārāki, Disistict Superintendent Leeward District Office

Gordon Kuwada, District Superintendent Cēntrai Disistrict Office

Lokelañi Lindsēy. Districici Superintendent Maui District Office

Dr. Kiyoto Mizuba, District Superintendent Hawāai District Officē

Dr Mitsugi Nakashima, District Superintendent Kauai District Office

Claudio Suyat, District Suporintendent Honolulü District Office

Kengo Takata, District Superintendent Windward District Office

The intent of this course guide is to provide teachers with guidelines and suggested activities for teaching an advanced programming course in the BASIC language: The guide supports an one -semester course; BASIC Programming II.

Although primarily oriented toward mathematics; this document does offer sample applications in business. The sample applications also address the needs of students with a variety of academic backgrounds.

The revision of the original draft of this guide is based on recommendations from teachers and other specialists during the pilot study conducted in the 1985-86 school year.

It is hoped that this guide will prove to be useful to those secondary teachers who wish to implement BASIC Programming II at their schools.

Francis M. Hatanaka Suberin indent

ACKNOWLEDGMENT

Development of the uriginā drāft for the BASIC Programming II Course Guide, evaluation of the piloi use of the draft and subsequent revision of the document were conducted by Developing Instructional Computing, an ECIA, Chāpter 2 Project, under the management of Rosemary Hill Darabian, General Education Branch; Office of Instructionā Services.

Appreciation is extended to the teachers in the piot schools whose input was most helpful in the revision of the guide. They are:

Charles Adams
McKinley Righ School
Naomi Nishīda Sandra Shirachi
Fay Zenigàmi
Wāipāhu High School
Castle Bigh School
Nānākuli Aigh School
Recognition for iryanole input is also extended to two teachers who teach BASIC in business éducation.

Amy Fujiji Kaimukj High School
Linda Kishimoto McKinley High School
The Department of Education also acknowledges the rollowing state personnel who provided recommendations and support in the development of the guidè.

Evelyn Moriuchi
Kāthleen Nishimura
Yukio Toyama

Educational Specialist, Computer Education Educational Specialist; Mathematics Educational Specialist, Business Education

Finally recognition is extended to those teachers in the summer inservice training session who proviled vital feedback on the strengths and weak'iessēs of the original dräft.

BASIC PROGRAMMING II

TAELE OF CONTENTS

FOREWORD i
ACKNOWLEDGMENT iii
TABLE OF CONTENTS V
INTRODUCTION 1
COURSE DESCRIPTION 1
COURSE REQUIREMENTS 3
Gradēs 3
Goals 3
Student Expectātions 3
Prerequísitēs 5
Materials 5
Time for Activities 5
Tēachèr Prépãation 5
COURSE OUTLINE 7
SyLLAbuS 9
COURSE MANAGEMENT CONSIDERATIONS 13
Reference Mácérials 13
Diskettēs 13
Classroom Management 13
Assignments and Grāding 14
SAMPLE ACTIVITIES AND PROGRAMS 17
Introduction to Activities 17
Sample Activity Clustē \#l 19
Sample Activity Clūstē \#2 27
Sample Activity Clustē \#3 39
Sample Activity Cluster \#4 89
Sample Activity Cluster \#5 109
Sample Activity Cluster \#6 145
Sample Activity Cluster \#7 173
APPENDIX 181
Taxonomy of Goals, Objectives and Student Expectations 183
Sample Lab Sign-Up Sheet 186
Sample Grading Sheet for Student Programs 187
A Motivation Technique in Computer Programming 188
ASCII こodes 190

BASIC PROGRAMMING II

táble of contents

RESOUREES 191
Recommended Textbook 193
Recommend Teáching Aīds; Sōftware and References 195
Recommended Periodicais 201
Audiovisual Services 203
Technical Assistance Center 207

This guide for BAS:C Programming 11 is not intended to serve as a textbook but räthèr ās à framevork of goals and activities, upon which the high school teachēr cān organize, build and expañ his or her course.

Although thēre is an abundance of resource materials and textbooks available for an introductory course in $A A S I O$, tnere are considerably fewer materials for an advanced course in BASIC at the secondary school level. Many of the college texts are "cut and dry" conveyers of facts; format and syntax, with little emphasis on areas sưch as problem solving and illustrating effective versus less efficient programing styles. The latter chapters of most introductory high school texts do offer material appropriate for this counse, but no one text is recommended, as none provides ascomplete coverage of all topics within the course objectives. Therefore, a combination of texts and reference books should be available to the teacher of BASIC Programming 11. Refer to the lists of Recommended Textbooks, Teaching Aids, Software and References in the Resources section ōf this guide.

Because students enrolled in this course will have successfully completed BASIC Programming I or the equivalent, the ir background in the subject matter should be quite similar. Whether or not students have successfully completed Algebra I, they should have a solid understanding of the concept "variable." In many cases the same teacher will be teaching both programming courses, enabling the students to progress smoothly from one course to the next. However, regardless of who teaches BASIC Programming II or its equivalent (such as in the Mathematics or Business Departments), a short period of overlap between the two courses should prove valuable in reviewing key concepts from the past and projecting their potential uses for the future.

COURSE DESCRIPTION

This course is designed to reinforce and extend the pogramming skills learned in BASIC Programming I and to develop the following fundamental concepts and skills of programming, using the computer language BASIC:

- write logically structured, well-documented programs
- select and use appropriātē ālgorithms.
- design and use numeric and string arrujos and matrices
- design appropriate érror trāpping routines
- design and manipulatē sequential and random access files
- distinguish typēs of dātā structures
- recognize the ethical and social implications of computer use.

GRADES: $9-12$
Goris:
The four goals for Computer Science are.

1. The student will demonstrate competence in wíng computers;
2. The student will use the competer as a towi for problem solving and decision making;
3. The student will recognize the impace of computers in daily ife;
4. The student will investigate educational and career opportunities in computer-rēlated proféssions.

The taxonomy of goals, objectives and student expectations ís derived from the computer science component of the Computer titeracy Framework. The recently revised version of this taxonomy can be found in the Appendix.

The taxonomy, which is an analytical outline of the framework; has these desicn features:

1. Gouls are listed and subdivided into oijectives which are further subdivided into student expectations;
2. Objectives are phrased so that they can be used to identify relevant classroom materials;
3. The numerical identification system is designed to accept expansion or reduction of goals and objectives as experience requires.

STUOENT EXPECTATIONS:

The numeric system of the Taxonomy cunsists of one-, two- and three-digit numbers, each separated by decimal points. The first digit always represents a goal, whether it stands by itself or in a two-or three-digit numher. Likewise, the second digit represents an objective ānd the third digí stands for a student expectation: the twenty-nje student expectations for Computer Science àre delineated below under the appropriate geals:

GOAL 1 The student wily demonstrate competence in using computers.
1.1.1. The student sē̄ēcts ārd uses appropriāte rēsurces (manuals, programs, peripherāls, etc:) for performing a tásk.
1.1.2. The student àdāpts programs to sōve spec ífíc probiems.
1.1.3. Thé stūdent evaluãtes and compares computer programs (prepack= aged and student's own).
1.2.1. Thé studênt demenstrates through à project the processing of information.
1.2.2. The student implements routines to process information through searching, sorting, deleting, updating, summarizing; storing, etc.
1.2.3. The student explains the major páts and functions of a computer system (e.g., CPU - registers, accumulators; memory addrēsing; peripherals - cylinders, tracks, sectors).
1.3.1. The student demonstrates the ability to clearly define problenis
1.3.2. The stu subdivide a particular problem into logical subproblems. The sitưdent designs structure d solutions to problems algorithms = by applying the principles of top-down design méthodology.
1.3.3. The se student properly implements the available control structurés - sequence, iteration and branching - when coding algorithms into a specific high-level language.
1.3.4. The student designs and uses numeric and string arrays and mátricess.
1.3.5. The student demonstrates the ability to anticipate, identify, isolate and correct errors.
1.3.6. The student ēnhances the readability and c̄larity of his or her program by including appropriate documentation.

GOAL 2 The student will use the computer as a tool for problem solving and decision making.
2.1.1. The student describej the major types of data structures available to the high-level language being studied and understands their uses and limitations.
2.1.2. The student recognizes and appropriately utilizes elementary data structures in solving problems.
2.2.1. The student recognizes and appropriately utilizes elementary algorithms in solving problems.
2.2.2. The student designs and implements his or her own algorithms in solving some types of programming problems:
2.3.1. The student creates and utilizes sequential data files for file-processing programs.
2.3.2. The student creates and utilizes random data files for fileprocessing programs.
2.3.3. The student easily uses mathematical and string manipulation functions specific to the high-level language being studied.
2.3.4. The student designs a variety of graphics programs.
2.3.5. The student experiences working as a team in a programming environment which simulates the actual field where each team is responsible for developing one module in a larger programming sys tem.
2.4.1. The student recognizés and uses computer application tools.
2.4.2. The student valués éfficient information processing.

GOAL 3 The student will recognize the impact of computers in daily
3.1.1. The student identi"ies computer applications in business, industry, scientific rēsearch, medicine, government, education, health and sociā services, recreation, creative arts, étc:
3.1.2. The student appreciates the economic benefits of computerization for society.
3.1.3. The s'tudent understands thā computers can be used to éffect distribution and use of economic ànd political power, and used in criminal and other anti=social activities that affect soc iety in undesirable ways.
3.2.1. The student accepts responsibitity for following school and lāb rules pertaining to computer éthics.

GOAL 4 Thé s̄tūdent will investigate educational and career opportunities in computer-related professions.
4.1.1. The student identifies careers that involve computers directly (support service, technical and scientific careers, data management, programming analysis, etc.)
4.1.2. The student compares educational requirements and opportunitias for careers thà irivolve computers.

PREREQUISITES:

BASIC Programining I or the equivalent.

MATERIALS:

Microcomputers with àt most two students per computer per cīass; textbooks and other reference books on the programming language BASIC.
TIME FOR ACTIVITIES:
Time will vary from one day to one month for the programming assignments, depending on the type of assignment (an exercise; a practice program or a term project), the number of computers āvāilabie, the number of students in the class(es) and the number of hours the láb is available.

TEACHER PREPARATION:

The teacher should be a programmer in BASIC, i.e., know enough about the language to write programs, using features of the language listed in the Course Outline, following this section. Knowledge of datā structures and of manipulating sequential and random access files is essential.
I. Computer Memory and Processing
A. Disk Operating Sysstèm
B. Compilers vērsūs Interpreters
C. Bits, Bytēs and Bināry System
D. Binary Code vérsus ASCII Code
E. Data Types
II. Programming Fundamentals
A. Problem Solving
B. Top-Down Design
C. Subroutines or Subpr aräms
D. Data Entry and Erro ēcking Subroutines
E. Documentation

F: Debugging Techniques
Iff. Finctions in BASIC
A. Intrinsic functions

1: Mathematical Finctions
2. String Manipulation Functions
B. User-Defined Functions
IV. Lists àn $\begin{aligned} & \text { Tāblés in BASIC } \\ & \text { in }\end{aligned}$
A. One-Dimensional Arrays
D. Two-Dimensional Arrays
C. Searching and Sorting Arrays
V. Datā fīlès
A. Sequentia! File Processing
B. Rañom File Processing
VI. Bata Structures
A. The Stack
B. Queues and Linked Lists

G: Trees
VIf. Graphics
A. tecw-Reso ution Graphicr
B. High-Resolution Graphics
VIII. Computer Ethics and Impact on Society
A. Computer Careers
B. Computer Usos and Misuses
I. Computer Hardware/Software Considerations
A. Computer Láb Rules
B. Proper Computer Care
E. Disk Operating System
B. Gompilers versus Interpretērs
E. Bits; Bytes and Binary System

1. Binary and ASCII Codes
2. Data Types
(Topics II and III should be emphasized throughout the course.)
II. Structured Programming
A. Control Structures
3. Sequence
4. Selection
5. Iteration or Repetition
B. Top-Down Design
6. Modular Programmiñ
7. timited Use of GOTO
C. Subroutines or Subprograms
III. Problem-Solving Strategies
A. Problem Definition and Flowchart or Algorithm Désign
B. Coding and Error Checking Subroutines
C. Testing and Debugging Techniques
D. Documentation
(Topics IV and V could be interchanged or combined.)
IV. Sübscripted Variables
A. One-dimensional Arrays
8. Searching tists
9. Sorting Lists
B. Two-dimensional Ārrays
10. DIM Stãtements
11. MAT-READ Statements (optional)
V. BASIC Functions
A. Intrinsic Functions
12. Mathematical Functions

INT, RND, SQR, SGN, ABS, SIN, COS; TAN; LOG; EXP
2. String Manipulation Functions

CHR\$, ASC, INKEY\$ or GET A\$, LEFT\$, MID\$, RIGHT\$, STR\$, VAL, LEN
B. User-Defined Functions: DEF FN
VI. File Handing
A. Sequential files

1. Statements and Functions for File Processing
2. File Commands
B. Random ôr Direct files
3. Records and Fields
4. Random file Processing

Vif: Graphics

A. Low- and High-Resolution Graphićs

1. Plotting
2. Drawing
B. The Uses of Computer Graphics

VIff. Data Structures
A. The Stack

1. Definition and Function
2. Examples and Applications
B. Queues and tinked ti ts
3. Definitions and Functions
4. Examples and Applications
C. Trees
5. Definitions and Functions
6. Examples and Applications
(Topic IX should be addressed throughout the course.)
1*. Computer Ethics and Impact on Society
A. Implications
7. Computer Careers and Other Job Opportunities
8. Applications in Industry, Médicinē, Dãtã Processing, etc.
B. Issues
9. Computer Misuses and Crime
10. Unemployment and Depersonalization
11. Privacy
X. Assignments
A. Daily or Weekly Exercises
12. Class
13. Team
14. Individuài
B. Weekly or Biweekly Shōrt Programs
15. Team
16. Individual
C. Term Froject
17. Pair of students
18. Individual
D. Unit Tests

REFERENCE MATERIALS

It is highly recommended that reference books be available which include the features unique to the computer being used and trat programming āsignments be designed to include some of these features whenever possible. The following is a list of references to consider:

1) Dictionary of computer terms;
2) Books or workbcoks specifically written for the computer being used;
3) Periodicals;
4) Quick Reference Cards for the computer being used.

DISKETTES

Each student should have his or her own diskette for storing the assigned exercises and programs. Backups of his or her work should be made regularly by the student on a second diskette to ensure protection from loss due to disk damage. At least one of the diskettes should be kept in a secured file located in the lab or the classroom.

CLASSROOM MANAGEMENT

A lab setting with one student per computer is ideal. No more than two students working at à computer is recommended. In most cases there will be more students per class than microcomputers. Therefore; class time should be equally divided into work sessions to enable each individual student his or her turn. A system should be encouraged whereby students must first plan their project or assignment on paper before using the computers. Development of flowcharts or algorithms is an appropriate pre-programming activity. Other desk assignments or worksheets should be provided to involve all students in constructive activity while waiting for their computer time.

Sign-up sheets should be available for computer time outside of the class period. There should be a limit as to how many times a student signs up during a week. The student should cross off his or her name; when unable to keep the appointment, allowing other students a chance for that time slot. Penalties could be given to those who abuse the sign-up system. Refer to the sample sign-up sheet located in the Appendix of this guide.

With a computer lab setting; which is recommended, the teachers may need an assistant or two to mantain order in the classroom while he or she is in the lab or to help out in the lab while he or she renains in the classroom. Rewards for thēse asssistānts should inclưde bonus points, extrá computer time or the additional knowledge and experience gained by this opportunity.

Assignments can include daily or weekly exercises on specific programming skills ōr concepts, weekly or biweekly short programs involving related course content and one or two term projects of a longer program incorporating most major concepts presented thà quarter or semester. Programming assignments can be distributed one week before the due date of the previous program, and new material needed can be covered from that week. After the deadline has passed for any programing assignment, it is helpful to compare and discuss several student approaches at solving the problem. When there are no lectures or lab exercises, students can work on their flowcharts at their desks or enter their programs at the computers. A constant overlap of programming assignments during the semester eriabies maximum use of programming time and allows students who complete their programs early to have another project to prepare.

Adequate documentation is just as important as solving the problem. Documentation should be included as the program is written. This approach mākes the debugging process easier for the student and the teacher. Students can work on their docimentation at their desks before they enter the REM stātements in their programs.

Some students may want to work in pairs on their programs. This generally works out well when both students have the same ability level and the work can be divided satisfactorily between the two. Both students should receive the same grade for the program: There are times when exercises àre best done by the class ás a whole, a team or paī of students or the individuāl. Students cān learn from one another in group work, but they càn àlso tākē advantàge of the situation by letting others carry the load. It is left to the discretion of the teacher as to when students should work in groups or alone.

One suggestion for handling a class with a wide range of student proficiency is to assign several versions of a programming problem adjusted to an appropriate level oi difficulty. The more skilled individuals can be challenged with the most difficult version, while the least able can be given a version that will help them grow without overwhelming them.

Concerning due dates for assignments; alternatives include giving extra points for the early completion of a program or not accepting late ones. However, there should be a ceiling on the number of extra points given, such as one point for each day an assignment is early, up to a maximum of five points. As suggested in the guide for BASIC Programming 1 , an earlier due date for the flowchart tends to motivate the student to start developing his or her program sooner than if both the flowchart and the program are due at the same time. This also allows the teacher adequate time to spot probiems that a student may be having with the assignment.

A possible weight distribution for grading programming assignments BASIC

$$
\begin{aligned}
& 20 \% \text { documentation } \\
& 15 \% \text { valid output } \\
& \text { A sample of a other (such as adhering to the lab rules). }
\end{aligned}
$$

INTRODUCTION TO ACTIVITIES

The suggested sample activity clusters and programming assignments on the following pages support the fundamental concēpts and skills delineated in the Course Description; the student expectations enumerated in the Course Requirements and the content prescribed in the Course outline. These activitiēs provide teaching strategies for introducing certain concepts; developing specific skills or reinforcing previously leãrned aspects of BASIC. The syllabus included in this guide offers only a suggested order of content. It should be noted that within the sample clusters of activities, syllabus topics may not be in the exact order given, as some ássignments can easily incorporāte more than one tōpic- For instance, graphics may be integrated throughout the course, not presented just toward the end of the semester. The level of experience and skilis of the students will most likely determine the order of presentation of topics and the degree to which they are convered.

Examples of most progrāms are geared for Apple equipment but cān be nodified for other brands of microcomputers.

The sample activities and programs are nōt intended to be the only method of presentation but are instead "starting points" from which teachers can expand, using thēir own āpproaches; ideas and creativity.

SAMPLE ACTIVITY CLUSTER \#1
 Review of Hardware/Softwarē Considerātions

Topics:

1. Computer Lá Rules
2. Proper Computer Care
3. Disk Operating System
4. Compilers versus Interpreters
5. Bits, Bytes and Binary System

Clāssroom Management:

The class as a group will be involved with these activities.

Māteriàls:

Overhead projector and prepared transparencies;
Videotape player and the videotape, "Hardware and Software";
Demonstration microcomputer and large-screen monitor;
Handouts.
Time for Activities:
Approximately two to five days
Teacher Preparation and Procedures:
Prepare transparencies, handouts and the demo disk of BASIC and Pascal programs: All sample materials for these activities are located in the Sample Assignments and Materials for Activity Cluster \#l.

1. Using the overhead projector, review the basic rules on lab behavior and proper computer care: (Emphasize any changes since last semester's course in BASIC Programming I.) Discuss any student concerns. Handout \#1 - Computer Lab fules is a sample set of rules that could be used.
2. Review the role of the Disk Operating System (DOS) or the CP/M System for the microcomputers the class is using. Show the videotape, "Hardware and Software;" and provide questions for discussion; such as from Handout \#2 - Questions for the Videotape; "Hardware and Software:"
3. Using a demonstration microcomputer, compare the software features of a compiler versus an interpreter via a simple program coded in BASIC and the Pascal programming languages: (Be sure to use a version of Pascal, such as Apple Pascal; that does function with a compiler.) Deliberately put some syntax errors in both programs: Consider the "pros" and "cons" of both systems. Two examples of a program coded in both languages are provided in Handout \#3 - Comparison of Two Computer tanguages.
4. Review or introduce the concepts of bit; byte and binary system. Distingüish the mājor dātā typess=-ASCII chārācters, integers and floäting point nümbers. Distribute Hândout \#4 - Binary Eard Game and hãve stưdents perform the game. Thè cārds coūld ālready be prepared in advance for the students, buit the important point is for each individual to try using the cārds ās directed and ex plain why the results turn out as they do. This could lead to àn interesting class discussion.

Sample Assignments and Materials for Activity Clustē \#1:

The following pages in this activity clustèr provide handouts thàt could be used in this course.

Handout \#1
Review

NAME
DATE
PERIOD
GOM:PUTER LAB RULES

1. The lab will be available for academic use from 7:00 a.m. to $3: 00$ p.m. Plan your work accordingly:
2. When needing the lab outside of class time to work on an assignment, sign up for only one time slot at a time--either before school, àt recess, lunch or after school. If you cannot make that appointed time, cross your name off the sign-up list. If you are late for that appointment beyond five minutes; you forfeit that lab time; unléss no one else needs it.
3. Non-academic game-playing is not allowed.
4. No food and drinks are allowed in the lab.
5. No TV wātching is permitted.
6. No copying is permitted. Anyone found copying will forfeit ail future use of the computer lab outside of class time. Only one backup copy of your own work disk is permitted.
7. Do not tāmper with othēr students' disks stored in the lab. Writtēn permission by that stüdent to use his or her disk is not acceptable. An appropriate consequence will follow any such violation.
8. Strive to be polite and considerate of others in the computer lab. Keep the noise level down, and vacate your position immediately upon completing your time slot.

Handout \#2

Review
NAME
DATE
PERIOD
QUESTIONS FOR THE VIDEOTAPE
"Ha-dware and Software"

1. How do competitors sneak into Atari's developmental lab in the Silicon Vālley?
2. Why is there a software lag? What does this mean for the future?
3. Whāt role dōes à modem play in data communications?
4. Dis̄tinguish thē differences ameng mainfames, minicomputers and microcomputērs.
5. Name three devices for inputting data into a computer system and thrēe dèvicēs for outputting data from this systen.
6. In whàt thrēe wàys cān printērs be chàracterized or described?
7. What are the five components of any computer system? Bescribe the rēlationships among thèse components.
8. How arē systēm progrāms different from systems services? Where does the opērating system fit?
9. What converts source code to object code or máchine language?
10. Why wîll non-procedural languages become the ultimate in user-friendly computer languäges?

> Handout $\overline{H_{4}}$
> Page 1 or 2
> Review

NAME

\qquad
PERIOD
BINARY CARD GAME
ESSENTIAL ELEMENT ADDRESSED: Comminicāting instructions to the computer; Using the computer as a tool (sorting)
MATERIALS: $153^{11 "} \times 5^{\text {ii }}$ index cards pēr student
Scissors
Hole Punch
Black marker
Fxtended paper clip

INSTRUGTIONS FOR MAKING BINARY CARDS:

1. Punch 4 holes $i^{i \prime}$ apart on the $5^{\text {i" }}$ side of the index cards.
2. Each hole will represent a place valuē in bāse two numeration.
3. Under each hole, write 2 raised to appropriate powers in order from right to left.
4. Number each card (using decimal numeration) $\overline{1}-15$ on the lower right corner.
5. Designate the value of the number written on the card by cipping appropriate holes: clipped holes represent a 1 , and closed holes represent a 0 In the example below, the decimal number 6 is shown, since 110 (bàse two $)=6$ (base teni.

Note: Each pāir of students should construct his or her own set of $\overline{\mathrm{j}}$ cārds.

```
Handout "4
Page 2 of 2
Review
```

INSTRUCTIONS FOR USE:

1. Shüfflē the eārds to mix up their order.
2. Stack all 15 cards, with punched edge of cards up.
3. Extend a paper clip and insert through the first hole on the right hand side. All cards that have a closed hole in the one's place will remain on the paper elip. All others will drop off.
4. Place the cards which drop orf at the back of the stack.
5. Now put the paper clip through the twos place and follow the same procedure.
6. Continue this process through and including the eights place hole. The cards should be in numeric order.

SAMPLE AETIVITY GLUSTER \#2
Structured Programming via Subroutines

Topics:

1. Dātā Stātements
2. Sübroutines and Iteration Control Struciures
3. Top-Down Design
4. Low-Resolution Graphics
5. Bār=Grāphs

Classroom Management:

Some of the work is best done by the elass as a whole; others by páirs of studentss; and still others by individuals:

Materials:

Demonstration microcomputer and lārge-screen monitor with demo progräms ; "Māking à Fāce" ànd "Bar Graph" on disk;
Handouts:
Current Almanàcs.

Time for Activities:

Approximately two weeks
Teacher Preparation and Procedurēs:
Prepare the handouts and sample progrāms on disk. All sample materials for thése activitiès āre locāted in the Sample Assignments and Materials for Activity Clustē \#2.

1. Úsing the chalkboard, review the basics of $\overline{R E A D}-\overline{D A T A}$ statements with numerous examplēs hāving érrors. Let the class as a whole find the syntax and logic errors.
2. Introduce or review (depending on the previous isxperience of the: class) subroutines and low-resolution graphics yiā a lecturo and demonstration, using the demo microcomputer ānd the "Mäking a Face" program already on dis̄k. Distribute Hāndout \#1- Demo Face Subroutine Program for students to see a listing of the program on disk. Emphasize the concepts of top-down design and modular programming, and hāvē stüdents intērpret the scãtements. After running the program, hàve groups of students modify it to generate six faces on the sucreen and then to display thē fācēs in random colors.
3. Assịgn two or thrēe short progrāms from Hāndout \#2 = Dātā Sōātements and Subroutinēs. Hāve s students work in piãirs.
4. Using the ficicocomputer to further demonstrāte sübroutines, present à progrāni for drāwing à bā: grāph, not using low-resolution grāphics but utilizing READ-DATA and GOSUB-RETURN stātēments. Hāve the class hèlp dévelop the program. After distributirig Händout \#3 - Demo Bar Graph Program, have the class modify it by incorporating names of different lengths in the DATA statement, scale the numeric data and line up the starting asterisks.
5. Āsign a bar graph program using Subroutines and Data Statenients, as in the demonstrated bar graph program. Provide several levels of difficulty and extra-credit work and assign each student a program at the appropriate level. Allow students to look up their own data in the library or from classroom Almanacs. Provided in Handout \#4 - Bar Graph, Using Subroutines and Data Statements are six sample bar graph assignments with varying levels of difficulty for different students. Ezch offers the same extra credit assignnerit, however.

Sanple Assignments and Materials for Activity cluster \#2:
The following pages in this activity clusten provide handouts that couid be used in this course.

```
Handout #1
Structured Programming
```

NAME DATE
PERIOD \qquad
DEMO FACE SUBROUTINE PROGRAM*

```
0001 REM ** MAKING A FACE **
0002 REM *` GRAPHIC SUBROUTINE
0003 REM ***************
0 0 1 0 ~ H O M E
0 0 2 0 ~ G R
0 0 3 0 ~ C O L O R = ~ 1 ~
0040 REM **MAIN PROGRAMM`*
0050 X = 0:Y = 0: GOSUB 1000
0060 X = 20:Y = 0: GOSUB 1000
0070 FOR I = 1 TO 2500: NEXT I
0080 TEXT : HOME
0090 GOTO 2000
1000 REM **FACE SUBROUTINE**
1010 HLIN X,X + 9 AT Y
1020 VLIN Y + 1;Y + 8 AT X + 9
1030 HLIN X + 9;X AT Y + 9
1040 VLIN Y + 8;Y + 1 AT X
1050 PLOT X + 3;Y + 2: PLOT X + 6;Y + 2
1060 HLII }x+4,x+5\mathrm{ AT Y + 4
1070 PLOT X + 2,Y + 5: PLOT X + 3;Y + 6
1080 HLIN X + 4,X + 5 AT Y + 7
10`0 PLOT X + 6,Y + 6: PLOT X + 7,Y + 5
1100 RETURN
2000 END
```

*From Apple BASIE by Richard Haskell, page 79; copyright (c) 1982 by Preñice-HaTl, Inc., Englewood Cliffs; New Jersey: Reproduced with permission.

Handout \#?
Page 1 of 2
Structured Programming
NAME
DATE PERIOD \qquad
DATA STATEMENTS AND SUBROUTINES

1. A freight company charges $\$ 70$ pēr ton for the first 12 tons and $\$ 40$ per ton for every ton over 12. The following companies had shipments as indicatēd:

Company	A	14 tons
Company	B	42 tons
Company	C	6 tons
Company	D	130 tons
Company	E	2360 tons

Write a program using DATA statements and SUBROUTINES to print out the company name, the toris shipped and thè chärgès for ēāch company.
2. Several schools ordered textbooks from the mainiand. The chärges for the books were: under 30 copies, $\$ 12.95$ each and 30 or more copies; $\$ 12.75$ each.

Schooi A	35 copies
Schooi B	70 copies
Schooi C	12 copies
Schooi D	90 copies
Schooi E	25 copies

There is also à $\$ 0.15$ per book shipping charge. Write a program using DATA statements and SUBROUTINES to print out the total bill for each school.
3. A company computes the monthly earnings of á salesman on the following basis: monthly earnings are 18% of total sales, plus a bonis of 15% of any amount sold in excess of $\$ 6000$. There are 6 salesmen in the company, and for the month of January their sales were as follows:

SALESMAN
MONTHLY YALES

1	$\$ 8200$
2	4800
3	6800
4	7850
5	5560
6	5900

> Handout $\overline{\#} 2$
> Page 2 of 2
> Structured Programming

Put the amount of sales in DATA statements and write a program using SUBROUTINES to cālculāte each person's monthly eàrnings, including àny bonusēs eârnēd.*
*From Data Parocessing: An Introduction wīth BASIC by Donald D. Spencer, page 450; conyright (c) 1982 by Charles E: Merrill Publish ; Co., Columbus, Ohio. Reproduced with permission.

Handout \#3
Structured Programming
NAME
DATE
PERIOD
DEMO BAR GRAPH PROGRAM
OUTPUT:

003
003
005
007
015 FOR I = 1 TO 5
020 READ A, A\$
022 PRINT A\$:" ";
025 GOSUB 500
030 NEXT I
050 GOSUB 550
300 GOTO 700
499 REM ROUTINE TO PRINT *
500 FOR J 三 1 TO A
510 PRINT "*";
520 NEXT J
530 PRINT:PKINT
540 RETURN
549 REM ROLTTINE TO PRINT -
550 FOR I = 1 TO 40: PRINT "=";
560 NEXT I
570 RETURN
600 DATA $29, A, 13, B, 2, C, 17, \bar{D}, \overline{6}, E$
HOME
PRINT "BAB GRAPH"
GOSUB 550
RINT
正

BAR GRAPH

B $\begin{gathered}\text { ************* }\end{gathered}$
$\epsilon^{\star \pi}$
В $\begin{gathered}\text { *********к******* }\end{gathered}$
E ******

Change line 600 to:
600 DATA 60; Art, 90, Bob, 30; Chārlēs, 50; Bavid, 20, Edward Modify the program to scale the numeric data and line up the starting *.

Handout \#4
Page 1 of 6
Structured Progrāmming
NAME
DATE
PERIOD

> BAR GRAPH - USING SUBROUTINES AND DATA STATEMENTS
> NUMBER (have taken or are now in classs)

Core Alg
Alg I
Geometry
Alg II
Trig/Analyt
Calculus
Computer Math
Poll the members of the clāss and get the number of students who have taken each of the above coürsēs.

Complete this chart and store the information in bata statements. Piot the results in BAR GRAPH form. Sãve às BARGRAPH.

EXTRA CREDIT
BAR GRAPH = USING SUBROUTINES AND DATA STATEMENTS
ISLAND AREA(SQUARE MILES)
Kauá i
Maui
Molokā
Oahư
Lanā
Hawaī
Complete this chart and store the information in Bata statements. plot the results in BAR GRAPH form. Save as BGRAPH2.

	Handout \#4
	Page 3 of 6
	Structured Programming
	NAME
	BATE
	PERIOD

BAR GRAPH = USING SUBROUTINES AND DATA STATEMENTS

STATE

 POPULATIONNew York
New Jersey
Calífornia
Pennsylvania
Mássáchusetts

Texàs

illinois

Complete this chart and store the information in Data statements. Plot the results in BAR GRAPH form. Save às BARGRAPH.

EXTRA CREDITT
BAR GRAPH - USING SUBROUTINES AND DATA STATEMENTS
ISLAND
AREA(SQUARE MILES)
Kauai
Maui
Molokai
Oahu
Lanai
Hawaii
Complete this chart and store the information in Data statements. Plot the results in BAR GRAPH form. Save as BGRAPH2.

Hāñout \#4

Page 4 of 6
Structured Programming
NAME
BATE
PERIOD \qquad
BAR GRAPH = USING SUBROUTINES AND DATA STATEMENTS
STATE AREA (SQUARE MILES)
Washington
Oregon
California
Arizona
Nevada
İ $\overline{\text { āhō }}$
Utah
Alāska
Complete this chart and store the information in Dāta statements. Plot the results in BAR GRAPH form. Save as BARGRAPH.

EXTRA CREDIT
dAR GRAPi! - USíng subroutines and data statements
ISLAND
Ā̃
Katai
Maui
Molokai
Oahiu
Lanai
Hawaii
Complete this chart and store the information in Data statements. Plot the results in BAR GRAPH form. Save as BGRAPH2.

PLANET MILĒS FROM SUN

Earth

Mercury

Venus

Mars

Jupiter
Uranus
Saturn
Neptune
Piuto
Complete this chart and store the information in Data statements. Plot the results in BAR GRAPH form: Save as BARGPAPH.

EXTRA CREDIT
bar graph - using subroutines and data statements
ISLAND AREA(SQUARE MILES)
Kauai
Maui
Melokai
Oahu
Lānài
Hawaii
Compléte this chart and store the information in Data statements. Plot the results in BAR GRAPH form. Save as BGRAPH2.

Hāndout \#4
Page 6 of 3
Structured Programming
NAME
DATE
PERIOD
BAR GRAPH - USING SUBROUTINES AND DATA STATEMENTS
NATION
Australia
Bangladesh
Britain
Canada
Chinā
Indiä
Jāpan
USA
USSR

POPULATION
AREA(SQUARE MILES)

```
Banglãdesh
Britain
Canada
```

Complete this chart and store the information in Data statements Have the computer calculate the population density for each country. Plot the rēsults in BAR GRAPR form. Save as BARGRAPH: (NOTE: density = population/ areà)

EXTRA CREDIT
bAR GRAPR - USing SUBROUTINES AND DATA STAATEMENTS
ISLAND AREATS UUARE MILES)
Kauaj
Maui
Molokai
Oàhu
Laná
Hawail
Complēte this chārt and store the information in Data statements. plot the results in BAR GRAPH form. Save as BGRAPH2.

Topics:

1. Onè-dimensional Arrays
2. Two-dimensional Arrays
3. Problem Definition and Flowchart Design
4. Control Strictures and Logical Operators
5. Erro:-Checking Subroutires
6. Documentatior
7. Testing and uebugging Techniques
8. Matrix Manipulation (Optional)
9. Hierarchy Charts and Menus

Classroom Märiagement:

Some of the work īs best done by the class as a whole, by pairs of students and by individuals.

Materials:

Videotape player and the videotape, "Subscripted Variābles and Arrays"; Demonstration microcomputer and large-screen monitor with the denio progran, "Visible Bubble Sort" from Softdisk Magazine and one menu-driven program, such as "Summer Games" from EpiX Computer Software:
Overhead projector and transparency for hierarchy chart; Handouts:

Time for Activities:
Approximateiy four to five weed.

Teacher Preparation and Procedures:

Prepare the handouts and transparency and preview the demo program. All sample materials for these activities are located in the sample Assignments and Materials for Activity Cluster \#3.

1. Using the chalkboard or overheal projector, introduce or review one-dimensional arrays. Shou how they are more effective than REAB-DATA Statements in manipulating large amounts of data: Assign any related reading material.
2. Remind students about the careful use of the logical operators--AND and $O R$ in the IF-THEN control structure. Provide Handout \#1 -IF-THEN Control Structure as a worksheet on predicting output using the IF-THEN Control Structure and logical operators in problem solving. Review the differences between the IF-THEN and the FORNEXT control structures. Have students incorporate these control structures in a program which performs the divisibility tests for $2,3,4,5,6,8,9$ and 10 for some input number. A sample listing
for one solution to this problem; using Applesjft BASIC; is providod in Handout \#2 - Divisibility Program.
3. Distribute to pairs of students Handout \#3 - Array Assignment 1 with several short array problems. Emphasize the need for continuing the problem-solving strategies learned in BASIC Programming E, such as problem definition and flowehart design. Continue to stress the importance of structüred programming; using the proper control struciures of sequence, sē lection and/or iteration.
4. For review and further explanation, show the videotape; "Subscripted Vāriāblēs ānd Arrāys," and previde Handout $\ddagger 4$ Questions for the Videotāpe, "Subseripted Variables and Arrays;" for discussion. This film presents a good introduction to the Bubble Sort.
5. Have students individually work on Hándout \#5 - Subscript Worksheet to determine the output for sēveral subscript problems. Discuss resuits. This worksheet may be most appropriate as a "break" in the Array Assignment 1 that reinforces student understanding of subscripted variables.
6. Present the bubble sort via lecture and the demo computer program, "Visible Bubble Sort" (from Sortaisk Magazine). For further infirmation on this program, see page 198. Have students select one of three programs to develop from Hãndout \#6 = Bubble Sort Assignment.
7. Piovide a review worksheet. Handout \#7 = GOSUB, for determining the output of various subroutines. Assign Handout \#8 = Crunch for fün and also as a review for designing a structured program; using subroutines:
8. Introduce two-dimensional arrays via a fecture and group demonstration of loading and displaying a table having four rows and five columns. Distribute Handout \#9 - Array Assignment 2 with several programming problems from which one is chosen by each student. Flowcharts should be required as well as good documentätiōn by inciuding appropriate REM statements. If necessary, provide Handout \#10 - Review Worksheet on Arrays. Handout \#11 Test ō Arrays may also be helpful:
9. Bemonstrate the value of providing error-checking or error-trapping subroutines for jaid input data: An example of such subroutines is proviced in Handout \#12 - Error-Checking Subroutine. Stress that ail subsequent programs should have entry validation sub= routines.
10. Review the procedures for testing and debugging structured programs. Excellent examples of programs needing debugging are found in Handout \#13 - Bebugging Exercise. (Refer to the restriction on reproduction, regarding these exercises.) Consider the tracing tectiniques provided by the computer systen in use. Show how the PRINT statement can be temporarily inserted to test
variables, especially after calculãtions, during search subroutines or before selection control structürēs.
11. As an optional activity, if your computer system accepts MAT statements; demonstrate the use of MAT-READ; MAT-PRINT and MAT-INPUT statements as matrix operations, which can simplify the handling of one- and two-dimensional arrays. Two example programs are provided in Handout \#14-MAT Statements. The text, The Basics of BASIE by Alfredo C. Gomez, offès an excē? ?ent chapter on Natrices. Ehailenge the more adept students with matrix addition, subtraction or multiplication problems.
12. Using Handout \#15 - Hierarchy Ciart, prēsent à lecture with the aid of an overhead projector to shew how hiexāchy charts:
a. encompass the basic criputer processing steps of input--processing--output;
b. aid in the visualization of fop-down structured programming;

From the same handout assign programs for désigning hierarchy charts and have the class identify and develop hierarchy charts for each program: Assian programs to be flowchārted and solved, using the modules identified as subbroutinēs. Explāin the "stubbingin technique; ii as described on pages 20-21 of Advanced Structured BASIC by Clark and LaBarre.
13. Bemonstrate software that is menu-driven. (Āny āāilābī softwâe can be used since almost all user programs are menu-driven, such às word processing, probiem-solving games ētc.) Hāve the clāss discuss the advantages of menu-driven programs for the user and programer: Present a lecture on the relationship between a hierarchy chart and a menu and on how menus are developed and used in programming. Explai! the use of ON GOTO and ON GOSUB, verification of selection from menu, and termination of program.
14. Distribute Handout 16 - Menu-Driven Programming Assignments. Dis= cuss with the class possible menu items for each program. Assign programs to be written by individuals or pairs. A samplē solution to problem 1 for the TRS-80 Model 4 and IBM PC computers is includ= ed in the handout.

Sample Assignments and Materials for Activity Cluster \#3:

The following pages in this activity ciluster provide handouts that could be used in this course.

IF-THEN CONTROL STRUCTURE
An IF...TAEN statement will cause control of the program to branch to the designated line when the given expression is TRUE. Sometimes it may be difficult determining whether a branch will occur. Here is a short program segment that may help you decide.

```
4 0 ~ X - 1 2 : Y = 2
50 IF X*2> }5\mathrm{ THEN }8
6 0 ~ P R I N T ~ " I T ~ D I D ~ N O T ~ B R A N C H " ~
70 GOTO_90
80 PRINT "IT LID BRANER"
90 END
```

Listed below àre a number of IF.o. THEN statements that should replace line 50 in the program above. Your job is to decide whether a branch to line 80 WILL or WILL NOT take place when $X=12$ and $Y=2$. Circle the correct answer. If you think the computer will produce a SYNTAX ERROR then circie the entire problem.
A) $5 \overline{0}$ IF X not $=Y$ THEN 80
B) 50 IF $\bar{X}+Y / X=10$ THEN 80
C) 50 IF $X-Y>10$ or $X<10$ THEN 80
D) 50 IF $X / Y=\operatorname{INT}(X / Y)=.0001$ THEN 80
E) 50 IF $X /(Y-I N T(X / Y))>.0001$ THEN 80
F) $50 \mathrm{IF} \operatorname{INT}(-1 * x+3.7)<=-44$ THEN 80
G) $50 \mathrm{IF} \operatorname{INT}((\mathrm{Y}+.5) * 10+.5) / 10=2.5$ THEN $\overline{8} \overline{0}$
H) 50 IF $\bar{x}<100$ OR $Y<10$ AND $X=15$ THEN 80
I) 50 IF $(x<100$ or $Y<10)$ AND $X>15$ THEN 80
j! 50 IF X $/ \operatorname{INT}(-. \overline{4})>\bar{Y}$ THEN 80
K) 50 IF $X<=-\bar{Y}$ THEN 80

will	will not
will	will not

```
Hãndout #1
Page 2 of 2
Variables and Strategies
    will will not
    will will not
    will will not
```


Hāndout \#2

Page 2 of 3
Variãoles and Strategies


```
LET N = VAL (N$)
REM
LET T1$ = RIGHT$ (N$,1)
LET T1 = VAL (T1$)
REM
LET T2$ = RIGHT$ (N$,2)
LET T2 = VAL (T2$)
REM
LET T3$ = RIGRT$ (N$,3)
LET T3 = VAL (T3$)
REM
```



```
REM * LOOP FOR SUMMATION OF DIGITS
REM ************末**********************************
LET R$ = N$
LEI P = LEN (R$)
FOR M = P TO 1 STEP - 1
LET P E LEN_(R$)
LET D1$ = LEFT$ (R$,1)
LET D1 \equiv VAL (D1$)
LET PV =Di * 10~ (N - 1)
LET N =N= PV
IF INT (N) =N<0 THEN N=INT (N) + 1
LET R$ =STR$ (N)
LET S = S 干 D1
NEXT M
PRINT : PRINT : PRINT
REM
```



```
REM * DIVISIBILITY TESTS
REM ***************************\pi
IF T1/_2 = INT (T1 / 2) THEN PRINT N$;" IS DIVISIBLE BY 2."
IF S / 3 = INT (S_ 3) THEN PRINT N$;"IS DIVISIBLE BY 3."
IF T2 1 4 = INT (T2_1 4) THEN PRINT N$;" IS DIVISIBLE BY 4."
IF T1 = O OR T1 = 5 THEN PRINT N$;" IS DIVISIBLE BY 5."
IF S / 3= = INT (S / 3) AND T1 / 2 = INT (T1 % 2) THEN PRINT N$;" IS
DIVISIBLE BY 6."
IF T3/8 = INT (T3 / 8) THEN PRINT I$;" IS DIVISIBLE BY 8."
IF S / 9 = INT (S_/ 9) THEN PRINT N$;" IS DIVISIBLE BY 9."
IF T1 =0 THEN PRINT N$;" IS DIVISIBLE BY 10."
REM ENCOUNTERED_PRINTOUT PROBLEMS FOR 660 SO 661 AND 662 WERE ADDED
IF Tl / 2<< INT (T1 / 2) AND S / 3<>INT (S / 3) AND T1 < < O AND
T1<'> > THEN
GOTO 665
PRINT N$;" IS NOT DIVISIBEE BY ANY OF THE NUMBERS TESTED."
```

Handout \#2
Page 3 of 3
Variables and Strategies

665
670

675

680 690 700

VIAB (7). HTAB (10)

PRINT "HAVE A Nice dAY."
900 END

Handout \#3
Page 1 of 2
Variables and Strategies
NAME
DATE
PERIOD

ARRAY ASSIGNMENT 1

Prêpare à flowchart for each of the following problems before entering code into the computer.

1. Load 10 values into an array A and 10 values into an array \bar{B}, and construct and output an array C for which every element in C_{-}is the sum of the corresponding elements in arrays A and B. (Save as ARRAY1.)*
2. Often a programmer is required to search through the elements in an array to find a specific or "target" value, the number of times it appears or the location of the target value. For examplé, load a 10-element array M and search the array to find the number of zero elements in it. (Save as ARRAY2.)*
3. Modify probiem \#2 and search the array M for the positions of the zero elements in the array. This problem seeks tre subscript designating the location in M of each zero value. (Save as ARRAY3.)*
4. Search an array \bar{R} of values for the largest value stored in it. Output this value and its location. (Save as ARRAY4.)*
5. Write a program to read the numbers $15 ; 63 ; 42 ; 87,65 ; 99,18$ into array X, and the numbers 84,$63 ; 44 ; 19 ; 98 ; 15 ; 87$ into array Y. The program should form and print a new list that contains only those numbers that are in both lists. (Save as ARRAY5:)**
*From Programming Apple BASIC by John J. Dielsi, Elāne S. Grossman, John P. Tucciarone, pages 227-230; copyright 1984 by CBS College Publishing Co., New York, New York. Reproduced with permission.
**From Data Processsing: An Introduction with BASIC by Donaid D. Spencer, page 481; copyright (c) 1982 by Charles E. Merrill Pubiishing Co., Columbus, Ohio. Reproduced with permission.
6. The factorial of a number is calculated by multiplying the number by successive smaller integers uncil the number 1 is reached. Here are some examples:

$$
\begin{aligned}
& 5!=5 \times 4 \times 3 \times 2 \times 1 \text { or } 120 \\
& 7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \text { or } 5040 \\
& 3!=3 \times 2 \times 1 \text { or } 6
\end{aligned}
$$

Write a program to accept numbers from the keyboard, store them intc an array, send them to a subroutine to calculate the factorial and print out a table similar to the one below. The number 999 will be the signal to halt inputs: (Save as ARRAY6.)

An example output would look as follows:

> 5 factorial $=129$
> 7 factorial $=5040$
> 3 factorial $=6$

END OF LISTING

Hāndout \#4
Vāriābles and Strategies
NAME
DATE
PERIOD
QUESTIONS FOR THE VIDEOTAPE,
"Subscripted Variablees and Arrays"

1. What is meant by a string variable?
2. How does $L \$=" 3 \times 5$ " differ from $L=3 \times 5$?
3. What is meant by subscripted variables?
4. Distinguish the difference among one-dimensional, two-dimensionā ānd three-dimensional arrays.
5. Illustrate how a FOR-NEXT joop can load an array.
6. What is à Bubblé Sort?
7. Why is à temporary storage area needed in a Bubbie Sort?
8. Why ís it $\overline{\mathrm{a}}$ good $\overline{\mathrm{i}} \mathrm{de} \bar{a}$ to use à subroutine for sorting?

Handout \#5
Variābles and Strategies

SUBSCRIPT WORKSHEET*
Determine the output:

*From Duplicating Masters - Experiencing BASIC by Michael Mulcahy, page 18; copyright (c) 1984 by Media Materials; Inc:; Baltimore; Maryland. Reproduced with permission.

NAME
DATE
PERIOD
BUBBLE SORT ASSIGNMENT
Do one of the following three programs. The assignment is worth 50 points, and the maximum number of points you can earn for each of the programs is listēd before the problem. Save às BUBBLEA, BUBBLEB or BUBBLEC.

38 pts A) Using the following DATA statement, write a program to read in and sort the data alphabetically. The program should print out the original list and the sorted list. A subroutine should be used for the sorting.

Use this datà statemeñ.
1000 DATA TOM, DICK, HARRY, BOB; MARY, ANN, SUE, ANDY, BOBBIE; MARIE

42 pts B) Write à program that will accept à list of names typed in from the keyboard. The program should print out this list and then print it out in alphabetical order. The user should first be ásked how many names he or she will input. A subroutine must be used for the sorting.

50 pts c) Write a program thāt will acceft a person's name and his or her test score into two arrays $P \$(x)$ and $S(x)$ from the keyboard. The program should allow the data to be sorted in either alphabetical order or in test score order. The user must be allowed to choose the sort order. The output st \because id be similar to the samples listed below. Use subroutines ior the sorts.

ALPHABETICALL

ANN	75		BOB	82
BOB	82	or	ANN	75
SUE	70		SUE	70

Handout \#7
Page 1 of 2 Variables and Strategies

NAME
DATE

Determine the output

1. $10 X^{-}=\overline{5}$

15 GOSUB 35
20 GOSUB 45
25 GOSUB 40
30 GOTO 60
$35 X=X \mp 4$
$40 X=X \mp 9$
$45 x \equiv x+7$
50 PRINT X,
55 RETURN
60 END
2. 10 GOSUB 50

15 GOSUB 40
20 GOSUB 35
25 GOSUB 60
30 GOTO 65
35 PRINT "TI",
40 PRINT "ME",
45 RETURN
50 PRINT "SO",
55 RETURN
60 PRINT "S"
65 END

```
Handout #7
Page 2 of 2
Variab!es and Strategies
```

5. 10 FOR B $\equiv 1$ TO 4

20 READ D\$, D
30 GOSUB 60
40 NEXT B
50 GOTO 99
60 IF $D / 2 \equiv \operatorname{INT}(D / 2)$ GOTO 90
70 PRINT D\$;
80 PRINT "OOL";
9 C RETURN
95 DATA $\mathrm{T}, 18,0,7, \mathrm{~F}, 8.2, \mathrm{P}, 2$ 99 END
*From Duplicating Masters - Experiencing BASIC by Michāel Mulcahy, page 10; copyright (c) 1984 by Media Matérials, Inc., Bāltimore, Maryland. Reproduced with permission.

In the game of Crunch, 21 sticks prop open the mouth of an imagnary alligator. You and the computer take uurns removing sticks from the ālligātor's mouth. You máy take 1, 2; 3 or 4 stieks each turn. The one who removes the lást stick causes the mouth of the alligator to snap shut and losēē.

CRUNCH qULES:
Start with 21 sticks
You take 1, 2, 3, or 4 sticks
Computer check to sēe if your move is légā $=$ in this gāme it means $1,2,3$, or 4 sticks

Subtract sticks you took
Calculate computer's move (5 minus your move)
Print out computer's move
Subtract computer's move from total remaning
Check to see if there is one stick left
You have lost if there is only one stick left
Otherwise take another turn
End

Save às CRUNCH: (100 pets)
Develop a well-structured and well-documented program. You may add graphics and sound to the program.

Extra-Credit Variations:

1. Ghange the number of sticks in the alligator's mou
2. Change the number of sticks that may be removed at . If either of the above changes is incorporated into jrogram, it will be necessary to develop a different strategy.

Handout \#8

Page 2 of 2
Variables and Strategies
STRATEGY:
Thís is a "RIGGED" game bēcause the computer will always win if you go first.

1. Start with 21 sticks.
2. You may take $1,2,3$, or 4 sticks.
3. Check to see if you mads a "legal" move.
4. The computer calculates its move which is 5 minus the number of sticks you took.
5. Play continues, alternating between you and the computer, until one stick is left.
6. It will be your tora to take the jone stick. $\bar{C} \bar{R} \cup \bar{U} \bar{C} \bar{H}$!

The game is plasi in multiples of 5 .
YOU TAKE COMPUTER TAKES

1	4
2	3
3	2
4	1

sticks at the
beginning of the round
your move plus computer's move
sticks léft at the end of the round

21	5	16
16	5	11
11	5	6
6	5	1

After four rounds; 1 stick is left and it is your turn to move. YOU LOSE!!
*Adaptation of "Crunch" by Flora Reess; published in Calculators/ Computers Magazine, 1978:

Handout \#9
Page 1 of 3
Variables and Strategies
NAME
DATE
PERIOD

ARRAY ASSIGNMENT 2 (50 pts)

Do one of the following two-dimensional ārrāy problems. The māximum number of points for ēach example is given in parentheses. Be sure to include the
 tine documentation. Includè à flowchàrt with your program.
(60 pts̄) 1. Asssume thàt àn intērstatē highway system connects cities $A_{\text {s }}$ B, C, D, E, F, G and H in that order. The distāncēs àè: A to B : 32 miles; B to $C: 49$ miles; C to $D: 10$ miles; D to $\mathrm{E}: 75 \mathrm{miles} ; E$ to $F: 50 \mathrm{miles} ; F$ to $G: \quad 63 \mathrm{mi}$: s ; and G to H: 43 miles. Write a program using a two-dimensional array to produce a mileage table; listing the total distance along the interstate between any two cities. Use one DATA stàtement for the seven mileagè given. (Save as MILEAGE.)*
(55 pts) 2. Use the computer to play a modified game of OTHEiLO. Have it randomly fill an 8 by 8 string variable array with X 's and 0 's and print the result on the screen. The X's are for player 1 and the 0's for piayer 2. Have the program ask the players alternately for the row and column of the opponents piece that should be flipped (changed from X to 0 or vice versa). All of the opponent's pieces along the horizontal or vertical line passing through the flipped piece are also flipped. For example, if player 1 fiipped the 0 at 1,8 , the board A would be changed to board B. (Save as OTHELLD.)**
(A) $\begin{array}{lllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & \bar{x} & \bar{x} & 0 & 0 & \bar{x} & 0 & \bar{x} & 0 \\ 2 & 0 & 0 & 0 & \bar{x} & \bar{x} & 0 & \bar{x} & \bar{x} \\ 3 & \bar{x} & 0 & \bar{x} & \bar{x} & 0 & x & 0 & 0 \\ 4 & 0 & 0 & \bar{x} & 0 & \bar{x} & 0 & \bar{x} & 0 \\ 5 & 0 & 0 & \bar{x} & \bar{x} & \bar{x} & 0 & \bar{x} & 0 \\ 6 & 0 & 0 & \bar{x} & 0 & 0 & \bar{x} & 0 \\ 7 & 0 & 0 & x & x & 0 & x & 0 & x \\ 8 & x & x & 0 & x & x & 0 & x & \bar{x}\end{array}$

[^1]Handout \#9
Page 2 of 3
Variables and Strategies
(50 pts) 3. Write a computer program to produce the chart similar to the one below. The chart should contain the following: year, make, selling pricē, and totāl paid for the car. The (simple) intērēst rāte and the years to pay are entered through the keyboard and may väry eãch time the program is run. (Save à CARSALES.)

Key board input: Years to pay
Intērēst ratē (simplē)

Input from data statements:	1980	Dodgē	$\$ 1500$
	1983	Chevey	$\$ 2730$
	1967	VW	$\$-1995$
	1932	Modē $\overline{\mathrm{T}}$	$\$ 15821$

Output:

interest rate...12\% Years to pay....5					
year	car\quad price				total
1980			$\$ 2400$		
1983	Dodge	$\$ 1500$	$\$ 4368$		
1967	Chevj	$\$ 2730$	$\$ 3192$		
1932	VW	$\$ 1095$	$\$ 21314$		

(45 pts) 4. Write a program that randomly displays a seating chart for a classroom of 20 seats with four rows and five seats in each row. There are 18 students in the class. The class list should be read in from a DATA statement. Use names of 6 letters or less. Unassigned seats should say EMPTY. (Save às SEĀTING.)
(40 ọts) 5. An inventory táble contains 10 rows and 5 columns. Load the following data:

item\#	\#sold	cost	sale price	total profit
327	0	3.75	5.49	0
159	0	4.29	7.39	0
237	0	7.89	9.00	0
148	0	5.69	8.50	0
265	0	3.29	4.95	0
187	0	4.99	7.89	0
211	0	3.57	5.50	0
304	0	6.87	8.25	0
517	0	5.29	7.25	0
419	0	3.85	5.29	0

$57 \quad 58$

Update the table by entering the number sold for each item. Compute (do not enter) the total for the profit column. Profit 三 (\#sold末(sale price - cost)). Output the entire array with suitable headings: (Save as PROFIT:)*
(40 pts) 6. The sales tax in Hawaii is 4\%. Write a program to output a table of prices from 25 cents to $\$ 5: 00$ in steps of 25 cents, with the corresponding amounts for sales taxes. (Save as STATETAX.)
($3 \overline{7}$ pts) 7. Write a program to accept as input a 5 by 5 table G. Use whatever numbers you want in DATA statements. Display the table. Output the smallest element in G and the subscripts defining its location in the array. (Save as SMALLEST.)
(37 pts) 8. Statistics for ánine member baseball team are arranged as follows. Lead the table and compute the average to 3 digits by dividing the number of hits by the number of at bats. Output the entire table: (Save as BASEBALL.)*

player\#	at bats	\#, its	\#homers	average
8	237	73	11	0
44	354	119	27	0
12	316	-89	14	9
9	289	289	14	0
22	320	107	9	0
32	288	91	11	0
17	346	101	13	0
28	276	86	4	0
11	342	108	15	0

(33 pts) 9. Construct two 3 by 4 arrāys, \bar{A} and \bar{B}; $\bar{a} l l$ of whose elements äre rändom integers betweon 1 and 10 . Construct an array E, äll of whose è èments āre the sums of the corresponding èlements from A ānd B. (Sãve ARRAYADD.)*
(33 pts̄) 10. Inpūt à 4 by 4 àrrā̄ A from à DATA statēment, ānd compute and print the ärray B, in which each element is 5 times the corrēsponding êlemènt in A. (Sãvè às ARRAYMUL.)*

[^2]The DIMension statement reserves space for data named by subscripted variables. DIM S(12) - reserves 12 locations in the memory tor the elements in array S.

Elements in an array are named by subscripted variables. The subscript distinguishes one element. from another by its location in the array.

$$
S=\begin{array}{llllllllllll}
12 & -8 & 0 & 1 & 6 & 3 & -1 & -9 & 10 & 7 & -14 & =5
\end{array}
$$

1. It is necessary to reserve space when an ârrāy contains more than \qquad elements.
2. What values in array S are named by the following subscripted variables.

3. Write a subscripted variable for each of the following elements in S .
0
-1 \qquad 6 \qquad -14 \qquad 12
4. In BASIE the subscripts are enclosed by \qquad .
5. Write each of the subscripted variables in BASIC.

6. A subscript may be ar \qquad , a \qquad , or an \qquad .
7. $A \equiv \begin{array}{llllllllllll}15 & 23 & -15 & 17 & -10 & 62 & 18 & 25 & 50 & 100 & =1 & 13\end{array}$

Write an appropriate DIM statement for the above array.
8. If $I \equiv 2, J=3$, and $K=4$, find the value which each BASIC expression represents.
$A(\mathrm{I})+A(\mathrm{~J})$

$$
\begin{aligned}
& \bar{A}(I+I * j)+\bar{A}(I * K+\bar{I}) \\
& \bar{A}(K=j)=\bar{A}(J) \\
& \bar{A}(I+j+K) / A(2 * K)
\end{aligned}
$$

\qquad
$A(\bar{K}) * A(I * \bar{K})$

$A(J * \bar{K} / I)+A(I+6)$ \qquad
\qquad

Hàñout \#10
Page 2 of 8
Váriáblés and Strategies
9. After space is reserved for an array, the next step is storing the elements of the array in the reserved memory locations. By placing the elements of the array in a DATA statement and by using FOR - NEXT statements to generate she subscripts, a programer transfers an array into the computer's memery.

Insert missi,g statements or complete the incomplete statements in each program which will store and print arrays.

All of the rules for variables apply to subscripted variables. Arithmetic operātions māy be performed using subscripted variables. Strings may be nàmēd by subsicriptē vāriāblès.

Each program below involvēs using subscriptē variables for accomplishing the tásk desscribèd in the REM stātements. Most errors involve the subscriptē vāriāblēs. Find ānd correct àll êrors. Rewrite each program corréctly.
10. 10 REM NUMBERING A

20 REM CLASS LIST
30 DIM N\$(12)
40 FOR $J \equiv 1$ to 12
50 READ N $\$$ (j)
60 PRINT J, N\$
70 NEXT J
80 DATA SMITH,MILLER....
90 END
11: 10 REM SUMMING GRADES
20 DIM G
30 FOR G = 1 TO 20
40 READ G(I)
50 LET S = S + G(I)
60 NEXT I
70 PRINT S "IS THE SÜM."
80 DATA $95,62,73, \ldots$
90 END
12. 010 REM MULTIPLY TEST SCORES AVG BY 3

015 REM MULTIPLY QUIZ SCORES AVG BY 2
020 REM EVERY THIRD SCORE - TEST SCORE

040 FOR J = 1 TO 12
050 IF $\mathrm{J}=3$ OR $\mathrm{J}=6$ OR $\mathrm{J}=9$ OR $\mathrm{J}=12$ THEN 80
060 LET $Q=Q+S(J)$
070 GOTO 90
080 LET T = T + S(J)
090 NEXT J
100 PRINT Q/8 * 2 " IS THE WEIGHTED QUIZ AVG."
110 PRINT T/4 * 4 " IS THE WEIGHTED TEST AVG."
120 DATA 85,52,91,70,.......
130 END
LET statements and INPUT statements may also be used to store arrays. Find the errors and rewrite the following programs correctly.
13. 10 REM WORD ARRAY

20 FOR I = 1 TO 25
30 PRINT "TYPE THE WORD FOR POSITION "; I
40 INPUT W(I)
50 NEXT I
60 FOR W $=1$ TO 25
70 PRINT W(L);
80 NEXT I
90 END
14. 10 REM ASSIGNING POSITIONS

20 LET S $(1)=35$
30 LET S $(2)=95$
40 LET S3 $=S(1)+S(2)$
50 LET $S(4)=S(1) / 5$
60 FOR I = 1 TO 4
70 PRINT SI
80 NEXT I
90 END
15. 10 REM TWO ARRAYS

20 DIM S (15), V(15)
30 FOR I = 1 TO 15
40 READ S(I)
50 NEXT I
60 FOR I 三 1 TO 15
70 LET $\forall=V+S(I) * 5$
80 PRINT V(I)
90 NEXT V
95 DATA 8,3,9,1,:....
99 END

[^3]Hāndout \#10
Page 4 of 8
Väriābles and Strātegies
NAME
DATE
PERIOD
REVIEW WORKSHEET ON ARRAYS (II)*
Two dimens ional arrays are practical ways of storing data. A teacher may store an individual student's grades in a single dimensional array, but it would be more practical to store all of the students' scores in a two dimensional array or matrix.

Elements stored in a matrix are identifier the maber of their rows and columns:

A student's name would be located in colde aid itis or her scores in columns two through twelve. The row nuriber sis sent: sy the student.

It is easy to see that every item irf a bizary eeds two subscripts to identify its location.

1. Find the values of the following suscripta viriables in matrix B.

$$
\begin{aligned}
& \bar{B}=\left|\begin{array}{lllll}
\overline{5} & \overline{4} & \overline{3} & \overline{6} & \overline{7} \\
9 & 7 & 1 & 2 & 3 \\
6 & 0 & 5 & 7 & 8
\end{array}\right| \\
& B(\overline{3}, \overline{5}) \equiv \quad \bar{B}(\overline{1}, \overline{1})=\ldots \quad \bar{B}(\overline{2}, \overline{3})=\ldots \quad \bar{B}(3,2)=\ldots \\
& \bar{B}(\overline{1}, 4)=\ldots \quad \bar{B}(\overline{2}, 5) \equiv \ldots \quad B(\overline{2}, \overline{2})=\ldots
\end{aligned}
$$

Handout \#10
Dage 5 of 8
Variables âd Strategies
2. Insert subscripts $\overline{\text { to }}$ identify the items in the following matrix.

$$
T=\left|\begin{array}{lll}
25 & 51 & 78 \\
17 & 16 & 10 \\
35 & 65 & 98 \\
82 & 61 & 91
\end{array}\right|
$$

$$
\left.\begin{array}{lllll}
\mathrm{T}(&) \equiv 17 & \mathrm{~T}(&) \equiv 91 & \mathrm{~T}(
\end{array}\right) \equiv 61
$$

A DIMension statement must include the number of rows and the number of columns to reserve space for a matrix.

$$
A=\left|\begin{array}{ll}
\overline{3} & \overline{5} \\
0 & 2 \\
1 & 1
\end{array}\right| \quad \operatorname{BI} \bar{M} A(3,2)
$$

3. Writē ān āpprop`iāte DIM statement for each array.

$$
\begin{aligned}
& 10 \text { DIM } \\
& R \equiv\left|\begin{array}{lll}
13 & 4 \overline{5} & 2 \overline{3} \\
20 & 15 & 30 \\
12 & 19 & 98
\end{array}\right| \quad \bar{S}=\left|\begin{array}{rrrrrr}
9 & 15 & 89 & 0 & 1 & 0 \\
19 & 35 & 90 & 9 & 6 & 9
\end{array}\right| \quad T=\left|\begin{array}{rrrrr}
7 & 32 & 15 & 99 & 9 \\
55 & 75 & 8 & 22 & 12 \\
0 & 1 & 1 & 10 & 1 \\
12 & 45 & 35 & 5 & 6
\end{array}\right|
\end{aligned}
$$

4. Insert missing staternes or complete the incorilete statements in each program whicn bill steme ond nrirt the ahove me rices.

10		- 0		16	
20	FOR I $=$	$?$		20	$F \cap \mathrm{R} J=1 \mathrm{TO}$
30	FOR J = $\because \because$	2	FER - - i 10	30	$B \mathrm{R}$ I = 1 T0
40	READ R I I $\cdot \cdots$	4		40	FERD $T(I)$
50	PRINT		INT	50	Plist T(J, I)
60	NEXT	56	\cdots	60	NE: I
70	PRINT	S0	: in?	70	PRINT
80	NEXT I	\%	$\because \quad 3$	80	NEXT j
90	DATE 13,			90	DATA 7, 32,
95	DATA Z ,	-		95	DATA 55,
98	DAIA 12, ...\%.:	39	ENE	96	DATA 0,1 ,
99	END			97	DATA 12; ...

```
Handout #10
Page 5 of 8
Variables and Strategies
```

5. Each of the following progrāms needs additional stātenents to be complete. Study the progràm cärefully before inserting státements.

05	DIM T 4 (4,6)	05	DIN: $\mathrm{B}(\mathrm{C}, 3), \mathrm{G}(2,3), \mathrm{V}(2,3)$
10	REM 4X6 MATRIX	10	REM ADDING TWO MATRICES
20	REM ADDING COLUMN 4	20	EOR I = 1 TO 2
30	FOR I $\equiv 1$ TO 4	30	FOR $J=1$ to $\overline{3}$
40	FOR $J=1$ to 6	40	READ $\mathrm{B}(\mathrm{i}, \mathrm{j})$
50	READ T(I, $)^{\text {) }}$	50	READ G($1, \mathrm{~d}$)
60	NEXT ${ }^{\text {J }}$	60	
70	NEXT I	70	PRINT V V (, J$)$,
75	FOR I = 1 TO 4	75	NEXT J
80	LET J = 4	80	PRINT
85		85	NEXT I
90	NEXT I	90	DATA $2,4, \ldots .$.
95	PRINT S " IS THE SUM";	95	ENT
96	PRINT " OF THE 4TH COLUMN."		
99	END		

010 DIM A $(4,5) ; B(4 ; 5) \mathrm{S},(4,5)$	150 NEXT
020 REM WORKING WITH MATRICES	155 NEXT
030 FOR I = 1 TO 4	160 REM ADDING ROW 2 OF MATRIX A .
040 FOR J = 1 T0 5	165
050	170 LET I \equiv ?
060 READ B $\operatorname{li}, \mathrm{J})$	175 LET D \equiv D + A (I, j)
070 NEXT J	180 NEXT J
075 NEXT I	185 PRINT "THE SUM OF ROW 2 İS" $\overline{\mathrm{D}}$
080 REM MULTiplyinu mairice a	190 REM FINDING A SPECIAL YALUE IN B
081 REM BY 10	195 FOR I $=1$ TO 4
090 FOR I 三 1 TO 4	200 FOR $\mathrm{J}=1$ T0 5
095 FOR J 三 1 TO 5	210 IF $B(I, j)=16$ THEN 230
099	220 (20
100 PRINT S(1, ${ }^{\text {d }}$),	230 PRINT "SIXTEEN IS IN MATRIX B."
110 NEXT J	240 NEXT I
115 PRINT	220 NEXT J
120 NEXT I	300 DATA 14, 18, 23,
125 REM ADDING MATRIX A	310 END

130 EOR $I=1$ TO 4
135 FGR J $=1$ to 5
140
145 PRINT M " IS THE SUM."i
Assume each of the following matrices have Eeen properly stored in the computer's memory. Insert appropriate statements to accomplish the task described.

$$
A=\left|\begin{array}{lll}
5 & 6 & \overline{8} \\
2 & 1 & 0
\end{array}\right| \quad \bar{B} \equiv\left|\begin{array}{ll}
\overline{6} & 7 \\
0 & 0 \\
2 & 3
\end{array}\right| \quad C=\left|\begin{array}{lll}
15 & 35 & 95 \\
20 & 25 & 30 \\
65 & 70 & 40
\end{array}\right| \quad D=\left|\begin{array}{rrr}
1 & 3 & 5 \\
6 & 4 & 2 \\
0 & 7 & -9
\end{array}\right|
$$

Handout \#10
Page 7 of 8
Variables and Strategies
6. Search matrix D for neyative values and change them to positive values.

100	rem negative to positive
110	EOR $\mathrm{I}=1$ TO 2
120	FOR J = 1 TO 3
130	
140	GOTO 16U
150	LET $D(\mathrm{I}, \mathrm{J}) \mp-1 * D(1, J)$
160	NEXI J
170	NEXT I

7. Form à nēw matrix \bar{E} by subtracting matrix D from matrix C.
200 REM NEW MATRIX E
205 DIM E $(3,3)$
210 FOR I $=3$ TO 3
220 FOR $=1$ TO 3
230
240 NEXI J
250 NEXT I
8. Chānge all tiu values in rew two in matrix C to zero.

300 REM ROW 2 TO ZERO
310 FOR J = 1 TO 3
320
330
340 NEXT J
9. Count all of the elements
equal to zero in matrix B.
400 REM COUNTING Z $\bar{E} R \bar{S} O \bar{S}$
410 FOR I $\equiv 1$ TO 3
420 FOR J $=1$ TO 2
430 IF $B(I, j) \equiv 0$ THEN 450
440 GOTO 460
450
460 NEXT J
470 NEXT I
10. Compare the elements in matrix \bar{C} to matrix D and print any elements which are contained in both.

500 REM COMPARING C AND D
505 REM PRINT COMMON EI_EMENTS
510
520
530 IF C(I,J) $=D(I, \mathcal{U})$ THEN 550
540 GOTO 560
550 PRINT C $(I, J) ; "$ IS IN D AND C"
560
11. Add i ows 1 and 2 in matrix A to form array G.

600 REM SUM OF ROWS 1 AND 2
610 LET I = 1
620 FOR J = 1 TO 3
630
640 PRINT E(j)
650 NEXT J
12. Add columns 1 and 2 in matrix D to form matrix $H(3,2)$.

700 REM FORM MATRIX H
710
720
730
740
750 EOR I = 1 TO 3
760 FOR J = 1 TO z
770 PRINT H $(3,2)$;
780 NEXT J
790
800 NEXT I

[^4]Handout \#10
Page 8 of 8
Variables and Strategies
13. Design and code a program that will generate the following output. Use Data stātements provided below.

Number Items Sold				
NAME	JAN	FEB	MAR	*TOTAL*
Company A	500	350	725	
Company B	468	410	750	
Company C	389	310	500	
Company D	206	600	463	
TOTAL				

```
DATA A,B,C,D
DATA 500,350,725
DATA 468,410,750
DATA 389,310,500
BATA 206;600;463
```

Handouit \#11
Page 1 of 3
Variables ūnd Strategies
NAME
DATE

TEST ON ARRAYS*

1. Determine whether eāch of the following statements is valid ou invalid. If invālid, state the syntax rūē violāted.
à: $100 \mathrm{~A}(\mathrm{I}) \equiv \mathrm{I}$
b. $100 \mathrm{I}=\mathrm{A}(\mathrm{I})$
c. $100 A=A(I)$
d. 100 IF $B 3(2 j=B 2(3)$ THEN 100
e- 100 DIM A(12)
110 PRINT A
f. $100 \mathrm{I}=-3$
$110 \mathrm{~A}(\mathrm{I})=2$
g. 100 A $\$(2)=" B I L L Y "$
h. $100 \mathrm{~A} \$(2)=B \$$
i. $100 A(I+J)=A(I)+\bar{A}(J)$
j. $100 A(1)+A(J) \equiv A(I+J)$
k. $100 \mathrm{~A}\left(\mathrm{~K}^{\prime}=A(\mathrm{I} * \mathrm{l})\right.$
2. What would be stored in ārray A as a result of the following program?

100 FOR K $=1$ TO 5
$110 A(K)=K^{\star} * 2+1$
120 NEXT K
3. What would be printed by this program?

100 DIM A(5), N\$(5)
110 FOR K $=1$ TO 5
120 READ A(K)
130 NEXT K
140 FOR K $\equiv 1$ TO 5
150 READ N\$(K)
160 NEXT K
170 FOR $K \equiv 1$ TO 5
180 PRINT A(K), N\$(K)
190 NEXT K
200 DATÄ $8,2,0,8,43, B E N, J E N, S A M$, JESS,ALLIE
210 END
4. Why would this program produce an error message?

100 DIM A (5), N $\$(5)$
110 FOR K $=5$ TO 1 STEP - 1
120 READ A(K), N\$(K)
130 NEXT K
140 FOR K $=1$ TO 5
150 PRINT $N \$(K), A(K)$
EO NEXT K
: $O O$ DATA $8,2,0,8,43, B E N, J E N, S A M$, JESS, ALLIE
180 END
5. What will be printed by this program?

100 DIM A(10), B(10)
110 FOR K $=1$ TO 10 STEP 2
120 READ A(K)
1230 NEXT K
140 FOR K $=2$ TO 10 STEP 3
150 READ B(K)
160 NEXT K
$165 \mathrm{E}=0$
170 FOR K = 1 TC 10
180 IF $A(K)=B(K)$ THEN 220
$190 \quad \mathrm{TS}=\mathrm{B}(\mathrm{K})$
$200 \quad B(K) \equiv A(K)$
$210 \quad A(K)=T S$
215 $\mathrm{I}=\mathrm{I}+1$
220 NEXT K
230. FOR K = 1 TO 10

240 PRINT $A(K) ; B(K)$
250 NEKT K
259 PRINT "THE NUMBER OF INTERCHANGES IS "; I
270 DATA 3, $-9,2,8,1,4 ; 2$; 3 280 END
6. Given array A and variable I and J with the following values stored in memory:

$A(1)$	$A(2)$	$A(3)$	$A(4)$	$A(5)$	$A(6)$	1	J
4	7.2	0	-1.1	88	-12.3	2	3

Evaluate each of the following:
a. $A(I)$
b. $A(I \wedge 2)$
c. $A(I \mp 3)$
d. $A(3)+A(I)$
e. $A(I) * A(I)$
f. $2 \star A(2)$
g. $A(I) / A(1) * A(J)$
h. $A B S(\operatorname{INT}(A(4)))$
j. $\operatorname{SQR}(A(1))$
j. $J \star A(J)$
k. $A(J-I)$

1. $A(J)-A(I)$
2. In reference to the above array A and variables I and d, identify each of the following as valid or invalid.
à. $=1$ * A
b. $\quad \operatorname{SQR}(A(\mathrm{~d}))$
c. $A(A(1))$
d. $A(I * 5)$
e. $5 A(I)$
3. Given a two-dimensional array \mathcal{S} which is 5 by 5, write a line or lines of code that will display the:
a. Fourth row of $\overline{\mathrm{S}}$
b. First column of S
c. Rows 2 through 4
d. Columns 1 and 5
e. Main diagonal of S
f. Tiae element in the center of \bar{S}
4. Given array M and variables \bar{I} and J with the following values stored in memory:

M(1)	$M(2)$	$M(3)$	$M(4)$	$M(5)$	$M(6)$	$M(7)$	$M(8)$	I	j
3	4	1.0	2	12	8	-100	6	3	2

Handout \#11
Page 3 uf 3
Variables and Strātegies
What would be the output of the following program?
$100 M(5)=M(I)+M(J)$
$110 M(I)=M(I)+M(J)$
$120 M(6)=M(I+J)$
$130 M(7)=M\left(I^{\star} J\right)$
$140 M(\mathrm{~J})=M(\mathrm{I})$
$150 M(I)=M(i)$
$160 M(I-J)=2$?
$170 M\left(I^{*} j\right)=0$
180 FOR K $=1$ TO C
190 PRINT M (K)
200 NEXT K
*From Programming in Appié BASIC by John J. Dielsi, Elaine S. Grossman; Jchn P. Tucciarone, pages 253-255; copyright (c) 1984 by GBS Eollege Publishing, New York, New York. Reproduced with permission.

Händout \#12

Väriāblés ānd Strātegies
NAME
DATE
PERIO
ERROR-CHECEING SUBROUTINE

```
010
0 2 0
030
040
050
080 GOSUB 150
110 GOSUB 150
140 GOTO 260
170 ROME
180 FOR C = 1 T0 10
```

```
INPUT "
```

INPUT "
060 INPUT "INTEREST RATE"; I
060 INPUT "INTEREST RATE"; I
070 S 三 I : REM LOADING SUBROUTINE NUMBER
070 S 三 I : REM LOADING SUBROUTINE NUMBER
090 INP!IT "YEARS TO PAY"; Y
090 INP!IT "YEARS TO PAY"; Y
100 S = Y : REM LOADING SUBROUTINE NUMBER
100 S = Y : REM LOADING SUBROUTINE NUMBER
120 REM ***ALL ENTRIES CHECKED..:OUTPUT FOLLOWS***
120 REM ***ALL ENTRIES CHECKED..:OUTPUT FOLLOWS***
130 PRINT "ALL NUMBERS ACCEPTEJ"
130 PRINT "ALL NUMBERS ACCEPTEJ"
150 REM ***SUBROUTINE FOR ENTRY CHECǨ***
150 REM ***SUBROUTINE FOR ENTRY CHECǨ***
160 IF S > 0 THEN 250
160 IF S > 0 THEN 250

```
REM ※**MAIN PROGRAM`**
```

REM ※**MAIN PROGRAM`**
HOME
HOME
inPut "LOAN AMOUNT"; l
inPut "LOAN AMOUNT"; l
S \equivt : REM LOADING SUBROUTINE NUMBER
S \equivt : REM LOADING SUBROUTINE NUMBER
GOSUB 150
GOSUB 150
PRINT " ILLEGAL ENTRY...START OVER!"
PRINT " ILLEGAL ENTRY...START OVER!"
PRINT
PRINT
FOR_D_ \ 1_T0 50
FOR_D_ \ 1_T0 50
NEXT D : REM DEIAY LOOP
NEXT D : REM DEIAY LOOP
NEXT C
NEXT C
FOR D \equiv 1 TO 500 : NEXT D : RUN
FOR D \equiv 1 TO 500 : NEXT D : RUN
RETURN
RETURN
END

```
END
```

Handout \#13
Page 1 of 7
Variables and Strategies
DEBUGGING EXERCISE*
HOTEL CHARGE PROGRAM
DIRECTIONS: The program below contains errors: Lecate the lines causing the errors and correct (DEBUG) them in the space provided.

```
C = cos\overline{t}}\quad\overline{D}=\mathrm{ days }\quadN$=\mathrm{ namee }\quad\overline{R}$= rate(class A or B),
```

010	
020	PRINTTAB(7); "HOTEL RESIDENTS"
030	PRINT
040	PRIHT AB(5); "NAME"; TAB(17); "DAYS" TAR(2仑); "CilAPGE"
050	PRi..
050	REAUNS, 0.9
070	
080	IF $R=A$ IHEN 110
090	IF $\mathrm{R}=\mathrm{B}$ THEN 140
100	PRINT ERROR IN JATA OF"; N
110	GOTO 60
120	C = D ${ }^{\text {\% }} 40$
130	GOTO 150
140	$C=D * 50$
150	PRINT N\$; TAB17: D; TAB24: "\$"; C
160	GOTO 6r
170	REM*** ****DATA*******
180	BATA BILL HILLIAMS; A; 3
190	BATA DONNA STANLFY; 2; B
200	DATA BOB FRENCH; A; 1
210	BATA VIRGINIA DWEN; 4; B
220	BATA END OF DATA: 0; 0
230	PRINT "END CF PROCESSING"
240	ENB

When the above program is DEBUGGED it will produce the following output:
HOTEL RESIDENTS

NAME	DAYS	CHARGE
BILL WILLIAMS	3	$\$ 120$
DONNA SIANLEY	2	$\$ 100$
BOB FRENCH	1	$\$ 40$
VIRGINIA OWEN	4	$\$ 200$
END OF PROCESSING		

[^5]
DEBUGGING E欠ERCISE*

AIRPLANE FLIGHTS

DIRECTIONS: The progrām bēlow contāins errors. tocate the lines causing the errors and correct (DEBUG) them in the space provided.
$C \$=$ Chicago $\quad F \$ \equiv$ Flight $\quad M \$=$ Memphis $N \$$: New York

010 REM THIS PROGRAM IDENTIFIES SELECTED
020 REM FLIGHTS LEAVING MEMPHIS;
Q30 REM CHICAGO, AND NEW YORK
040 PRINT "ENTER CITY INITIAL TO DISPLAY
FLIGHT NUMBER AND DEPARTURE TIME
050 PRINT "C \equiv CHICAGO"
060 PRINT "M = MEMPHIS"
070 PRINT "N = NEW YORK"
GEO PRIHT "ENTER C, M, OR N FOR FLIGHT NUMBEK AND IEPARTURE TIME"
090 OUTPUT F\$
100 IF F $\$=$ "C $\$$ " TEE 150
110 IF F\$ $=$ "M\$" THEN; 30

1SO PRINT "PLEASE TRY GRAIN"
140 UCO 50
150 PRINT "FLIGHT 445 -- DEP. 10:05A
160 PRINT "FLIGHT 427 -- DEP. 2:15P
170 PRINT FLIGHT 458 -- DEP. 3:15Pi
180 OTO 250
190 PRINT FLIGHT 442 -- DEP. 7:15Aㅍ
200 PRINT "FLIGHT 492 -- DEP. 730A"
210 PRINT "FLIGHT 408 -- DEP. 4:05P"
220 GOTO 250
230 PRINT "FLIGHT 405 -- DEP 10:52A
240 PRINT "FLIGHT 409 -- DEP 10:25A
250 PRINT
260 PRINT "END OF SCHEDULE"
270 END

\square
\qquad \square
\qquad
\qquad
When the above program is DEBUGGED it will produce the followin output:

- VTER CITY INITIAL TO DISPLAY FLIGHT NUMBER AND DEPARTURE TIME
C \equiv CHICAGO
$M \equiv$ MEMPHIS
$\mathrm{N} \equiv \mathrm{NEW}$ YORK
ENTER C, M; OR N FOR FLIGHT NUMGER AMO DEPARTURE TIME ?

Handout \#13
Page 3 of 7
Variablēs ānd Strātegies
(If a numeric chāracter or an alphabetic c̄haracter othèr thān \bar{C}, M, or N is entered, the following prompt will be displayed=-followed by the output displayed above.)

PLEASE TRY AGAIN

*Further reproduction is prohibited. See footnote on page 77.

Handout \#13
Page 4 of 7
Variables and Strategies

DEBUGGING EXERCISE*

UTILITY BILLING LIST
DIRECTIONS: The program below contains errors. Locate the lines causing the errors and correct (DEBUG) them in the space provided.

When the ábove progràm is DEBUGGED it will produce the following output:
101 AMOUNT DUE 34.52 AMOUNT OVERDUE 0

107 AMOUNT DUE 32.69
AMOUNT OVERDUE 0
134 AMOUNT DUE 29.80
AMOUNT OVERDUE 0
152 AMOUNT DUE 65.20
AMOUNT OVERDUE 31.79

Handout \#13
Page 5 of 7
Variables and Strategiés
4 CUSTOMERS PROCESSED
TOTAL BILLING THIS PERIOD $=162.21$
TOTAL DELINQUENT AMOUNT $\equiv 31.79$
END OF REPORT
*Further reproduction is prohibited. See footnote on page 77. 75

```
Haridout #13
Page 6 of }
Variables and Strategies
DEBUGGING EXERCISE*
CABLE TV BILLING
```

Directions: The progräm bēlow contāins errors. Locāte the lines causing the érrors and correct (DEBUG) thein in the spāce provided. The local TV cäble company chargēs $\$ 15.00$ for regular hookup ād HBO ànd ân ādditionāl \$7.00 for Cinemax, Source, and "Speciàl Offērings."

*Further reproduction is prohibited. See footnote on page 77.

1112	AMOUNT DUE 15
1213	AMOUNT DUE 22
1310	AMOUNT DUE 15
1491	AMOUNT DUE 22
1479	AMOUNT DUE 22
1523	AMOUNT DUE 15
1577	AMOUNT DUE 22
1603	AMOUNT DUE 15
1776	AMOUNT DUE 22
9 CUSTOMERS PROCESSED TOTAL BILLING $=170$	
NUMBER HBO CUSTOMERS END OF REPORT	

*From a set of 50 māstērs and 74 vilsuāl māstērs, Micro 5: Reviewing and Debugging, copyright (c) 1984. Fult sets availàble from the publisher, J. Wālch, Pưblishēr, Portland, Māine 04104-0658. Used by permission. Further reproduction is prohibited.
Hancout \#14
Page 1 of 2
Variabies and Strategiés
NAME DATE PERIOE \qquad

MAT-READ, MAT-PRINT, MAT-INPUT STATEMENTS*
PROGRAM:

```
10 REM PROGRAM READS AND PRINTS A 5X8 MATRIX
20 DIM M (5,8)
30 MAT READ M
40 MAT PRINT M;
50 DATA 45,58,59,75,74,76,86,94,13,12,41,63,52,20,37,29,18,24,16,35
60 DATA 30,56,31,24,25,65,64,98,87,82,81,73,50,60,86,94,83,41,62,31
70 END
```

OUTPUT:

45	58	59	75	74	76	86	94
13	12	41	63	52	20	37	29
18	24	16	35	30	56	31	24
25	65	64	98	87	82	81	73
50	60	86	94	83	41	62	31

PROGRAM:
010 REM PRCGRAM ADDS ROWS AND ELEMENTS OF A 3×3 INPUT MATRIX
030 DIM M $(3,3)$
045 PRINT "TYPE IN THE MATRIX AFTER THE QUESTION MARK"
050 MAT INPUT M
055 PRINT
$060 \mathrm{~T}=0$
070 FOR I = 1 TO 3
$080 \quad R(I)=0$
090 FOR J = 1 TG 3
$100 R(I)=R(I)+M(I, J)$
110 NEXT J
$120 \quad \mathrm{~T}=\mathrm{T}+\mathrm{R}(1)$
130 NEXT I
140 MAT PRINT M;
145 PRINT : PRINT

```
Handout #14
Fage 2 of 2
Variables and Strātegies
```

150 FOR $I=1$ TO 3
160 PRINT "THE TOTAL FOR ROW "; ; ;" IS ";R(I)
170 NEXT I
180 PRINT "THE TOTAL OF ALL ELEMENTS IS ";T
220
END

OUTPUT:
TYPE IN THE MATRIX AFTER QUESTION MARK
? $1,2,3,4,5,6,7,8,9$
123
$4 \quad 5 \quad 6$
$7 \quad 8 \quad 9$
THE TOTAL FOR ROW 1 IS 6
THE TOTAL FOR ROW 2 IS 15
THE IOTAL FOR ROW 3 IS 24
THE TOTAL OF ALL ELEMENTS IS 45
*From The BASICS of BASIC by Alfredo C. Gomez, pages 192, 194; eopyright (c) 1983 by CBS College Publishing, New York, New York. Reproduced with permission.

Handout \#15 Pagè 1 of 3
 Variablés ànd Stratégies
 HIERARCHY CHART

Basic Computer Processing Steps:

Basic Hierarchy Chart:

NAME

DATE
PERIOD

DESIGNING HIERARCHY EAARTS and PICjRiMS*
Program 1 Many employees are paid on an hourly basis. That is, the amount of pay is determined by multipiying the number of hours worked times the hourly rate of pay. The product of this multiplication is called gross pay, the amount of pay before any deductions àre made for income tax, Social Security (FICA), etc. Write à program to calculate and print gross pay. The program should clear the screen prior to besinning the print= out. It should then print each employee's name, number of hours worked, pāy rate, and gross pay. The data to be used by the program should be on DATA lines. The first item is the employee's name, followed by the number of hours worked and the pay ratē. Hērē āre the data lines:

```
5000 DATA "ABLE, MARTHA", 40, 5.20
5010 DATA "CARDWEL', HELEN", 38, 4.83
5 0 2 0 ~ D A T A ~ " M I M M S , ~ F R E D " , ~ 3 5 . 5 , ~ 3 . 9 7 ~
5 0 3 0 ~ D A T A ~ " S M I T H , ~ M A R I L Y N " , ~ 4 0 , ~ 3 . 9 7 ~
5040 DATA "WILLIAMS, JAMES", 38, 5.20
5050 DATA "EOD", 0, 0
```

Make the output as neat and easy to read as possible. Use an appropriate main heading and column headings; with the rolumn headings aligned. The submodules used in the proyram might be Get Data, Calculate, and Print Payroll.

Program 2 Frequently emninyees are paid $\frac{1}{2}$ times their regular rate for any hour wo. кed beyond 40 each week. These hours beyond 40 are referred to as overtime. Write a program similar to Program 1 (or modify Program 1) So that employees receive their regular pay for the first 40 hours and $1 \frac{1}{2}$ times their regular rate for hours over 40. The frinteut should contain columns for employee name, number of regular hours worked, number of overtime hours worked, regular pay rate; amount of regular gross pay, amount of overtime aross pas, and total gross pay (regular and overtime added together). The data lines to be used are:

8030 DATA "BURT, WILSON", $40,4.21$
8010 DATA "CALMER, HELEN"; 43; 3.90
8020 DATA "JONES, SARAH"; $42.75,5.45$
803 C DATA "KEITH; WILLIAM"; 38; 5.20
8040 DATA "MICHAELS, FRANK", 49, 4.80
8050 DATA "EOD"; 0, 0
Handout \#15
Page 3 of 3
Variables and Strategies
*STRUCTURED BASIC by Clark and Drum, Chāptēr 8, pp. 131-132; copyright (c) 1983 by South-Wēstēn Publishing Eompany, Cincinnatio, Ohio. Reproduced with permission.

ME:U-DRIVEN PROGRAMMING ASSIGNMENTS.
Prograni 1 Bookstore listing of books are to $u f$ prepared utilizing the following MENU:

BOOKSTORE MENII
CODE FUNCTION
1 Enter Book Information
2 List Books by Title
3 List Books by Author
4 End Program
ENTER 1, 2, 3 or 4 TO MAKE SELcCTION:
For CODE 1 the following screen should be develc:ed using six books to be entered by the user.

ENTER BOOK INFORMATION
POOK NUMBER 1
Bcok Title:
Book Author:
Quantity:
Bocik Price:
(DATA lines with REÁU strevents may be used while develcrisc and tesing the program. INPUT statements must be used for thë finished program:)

For CODE 2 the following report should it displayed:
BOOK REPORT BY TITLE

Title	Author	Qty	Price
Fāst Water	Numovich	8	12.95
Seà ānd Stone	Allergen	21	14.95
Shock Light	Brannigan	14	15.95
Thè Marchers	Iotay	8	10.95
Torch Gäs	Critener	12	12.95
Winds of Time	Pollutey	4	12:95
Totā] Quãntity:			
Total Value: \$			

Handout tio

Page 2 of 5
Variābles ant Strategies
DEPRESS ENTER OR RETURN KEY TO RETURN TO THE AEN:
For CODE 3 the following repor should be displajed: BOOK REPORT BY AUTHOR

Author	Titié	Qty	Price
Allergen	Seà and Stone	-8	12.95
Brannigān	Shock Light	21	14.95
Critener	Torch Gás	14	15.95
Iotay	The Marchers	8	10.95
Numovich	C̄ast Watèr	12	12.95
Polutey	Winds of Time	4	12.95

depress entir or return irey to return to the meng:
Program 2 Class ilistings for a school are to be prepared. A program should be designed and coded to produce the following listings:

CLASS METUU
CODE FUNCTION
1 Enter Class Information
2 Display in Class Name Sequence
3 Display in Teacher Name Sequence
4 Obtain Teacher Name ard Eqrollment
5 End Program
ENTER 1, 2, 3, 4 or 5 TO MAKE SELECTION:
För CODic 1 the fallowing screen should be developed.
ENTER CLAASS INFORMATION
CLASS NUMBER I
Enter Class Name:
Enter Teacher Name:
Enter Enrollment:
For CODE 2 the following screen should be developed.
bisplay class names in sequence
Class Teacher Enroll.
Bus 231 Harrelson 128
Bus 429 Abbot 32
84

```
                                    Handout #16
                                    Page 3 of 5
                                    Variables and Strategies
                                    Che 112 Chemonte 359
                                    Ghe 213 Zunderrey 21
                                    Phy 101 Nommerrei }57
                                    Soc 219 Berret 4E
                            Totāl Errollment: I
                            DEPRESS ENTER OR RETURN KEY TE NN TO THE MENU:
For CODE 3 thē following screen should be developed:
    DISPLAY TEACHER NAMES IN SEQUENCE
            Teachēr Ciasss Name Enroll.
            Abbott Büş 429 32
            Berret Soc 219 45
            Chemontè Chè 112 35S
            Harrēson Bus 231 128
            Nommerrè Phy 101 573
            Zunderrey Chè 213 21
            Total Enrollment: 1,"58
    DFPRESS ENT:. OR RETURN KEY TO RETURN TO THE MENU:
For CODE 4 the sllowing screen should be developed:
    OBTAIN TEACHE[ NAME AND ENROLLMENT
    Enter Class Name:
    Enter Teachēr Namé:
    Enter Enrollment:
DEPRESS ENTER OR RETURN KEY TO RETUPM TO THE MENU:
```

*INTRODUCTION TO BASIC PROGRAMMING by ShēTly ānd Cāshmān, Chāpter 8, pp. 8.58-8.61; copyright (c) 1982 by Anāhēim Pubiishing Company, Brea, California. Reproduced with permission.

POSSIBLE SOLUTION TO MENU-DRIVEN PROGRAM 1

```
O100 REM THIS PROGRLM ENTERS BOOK INFGAMATION; PRINTS A REPCRT BY TITLES
0110 REM OR BY AUTHOR THROUGH T'iE US' OF A MENU.
0120 REM FOR THE TRS-80 MODEL & AND IBM PE COMPUTERS
0130 REM
0 1 4 0
0150 REM VARIABLE NAMES USED
0160: BOOK.TITLE$()=BOOK TITLE ARIAY
0170: AUTHOR$()=NAME OF AUTHOR ARRAY
0180 ' QUANTYTY()=QUANTITY ARRAY
0190 ' PRICE()=PRICE ARRAY
0200 : N=NO. OF ITEMS IN_ARRAY
0210 CHOICE=MENU SELECTION
0220' S=SUBSCRIPT FOR ARRAY
O<<O I TOT.QUANT=TOTAL QUANTITY
0240 ' TOT.PRICE=TOTAL PRICE
0250 GRAND.TOT=GRAND TOTAL
0290
0300 REM***raITIALIZATION CF VARIABLES***
0 3 1 0 N = 6
0320 F:"\ \ i \ ######
0330 F1$ = "\ i \ \ # # ##.###
0340 DIM BOOK.TITLE$(N), AUTHOR$(N), : 
0350
0500 REM***MAIN MODULE - DISPLAY MENU AND G.-Í SELECTION***
0510 CLS
C520 PRINT: PRINT: PRINT:
0530 PRIMT TAB(15; "BOCKSTORE MENU": PRINT
0540 PRINT TAE:10) "CODE" TAB(20) "FUNCTION": PRINT
0 5 5 0 ~ P R I N T ~ T A E ( 1 2 ) ~ " 1 " ~ T A B ( 1 5 ) ~ " E N T E R ~ B O O K ~ I N F O R M A T I O N " ~
0560 PRINT TAB(11) "2" TAB(15) "LIST BOOKS BY TITLE"
0570 PRINT TAB(11) "3" TAB(15) "LIST BOOKS BY AUTHOR"
0580 PRINT TAB(11) "4" TAB(15) "END PROGRAM"
059C PRINT
0600 INPUT "ENTER A NUMBER 1 THROUGH 4: "; CHOICE
0 6 1 0 ~ I F ~ C H O I C E ~ > = 1 ~ A N D ~ C H O I C E ~ < = 4 ~ T H E N ~ 0 6 6 C '
0620 PRINT
0630 PRINT " "; CHOICE; " IS INVALID"
0640 INPUT " PLEASE RE-FNTER 1, 2, 3 OR 4: "; CHOICE
0 6 5 0 \text { GOTO 0610}
06*0 IF CHOICE=4 THEN }069
0670 ON CHOICE GOSUB 1000; 2000; 3000
0 6 8 0 \text { GOTO 0500}
0690 PRINT: PRINT "END OF BOOKSTODE PROGRAM"
0700 ENND
0710 '
1000 RFM***EN:`% BOOK INFORMATION***
1010 CLS
1020 FOR S=1 TO N
```

Handout \#16
Page 5 of 5
Variables and Stratēgiēs

```
    1030
    1040
    1050
    1000
    1070
    080
    1085 NEXT S
    1090 RETURN
    1100
    2000 REM***LIST BCOKS BY TITLES***
    2010 CLS
    2 0 2 0 ~ P R I N T ~ I I ~ T I I L E ~ A U T H O R ~ Q T Y ~ P R I C E " : ~ P R I N T ~
2025 TOT.QUANT=C : TOT.PRICE=G : GRANB.TOT=0
2030 FOR S=1 TO N
2040
2050
2060
2070
2080 NEXT S
2090 PRINT: PRINT: PRINT "TOTAL QUANTITY: "; TOT.QUANT
2100 PRINT: PRINT "TOTAL IALIJE: "; GRAND.TOT
2110 PRINTT: PRINT "PRESS ENTER TO CONTINUE": PRINT
2120 INPUT : RETURN TO MENU'; RESPONSE$
2130 RETURN
2140
**LIST BOOKS BY AUTHOR***
E`JiO i..j
3020 REM***SORTING ROUTINE***
3030 PRINT "SORTIING"
3040 FOR B1=1 TC N=1
3050 FOR B2=B1+1 T0 N
3060
3070
3080
3090
3100
3110
3120 NEXT B1
3130 CLS
3140 PRINT i" BOOK REPORT BY AUTHOR": PRINT
3150 PRI" " AUTHOR TITLE QTY PRICE": PRINT
3160 FO% -..I TO N
3170 D_\INT USING F1$; AUTHOR$(S); BOOK.TITLE$(S); GUANTITY(S); PRICE(S)
3180 NET: S
3190 PRINT: INPUT "PRESS ENTER TO ^^NTINUE"; RESPONSE$
3 2 0 0 ~ R E T U R N
3210
```


Topics:

1. Intrinsic Máthematical Fanctions
2. Ir,trinsic String Manipulation Functions
3. Usèr-Defilied Functions
4. i'igh-Rēsolution Graphics

Classroom Management:

Most of the work is best done by pairs of students. The culminuiting projects in functions and in graphics should be assigned as individual work.

Materials:
Eeilonstration microcomputer and large-screen monitor: Handouts.

Time for Āctivities:

Approximatēly thrēe to fou overall cäpability and int.
juld be allowed, depending on the ols of the stucients.

Teachis Preparation and Procedurēs:

Prepare the necessary handouts. Fxperiment with scme graphics problems to know which would be most appropriate for the stadents. All sample materials for these activities are located in the Sample Assignmants and Materials for Activity Cluster \#4.

1. Present a lecture on BASIC functions, using a demo microcomputer tō show examples of intrinsic string functions.
2. Distribute Handout \#i - String Functions Worksheet for pairs of students to practice string functions Intermingle with students in the lab to answer any questions.
3. Assign a string function protiem to ch of sjx groups of students from Handout \#2 = String Functic. Group Problems: Have them prepare a flowchart first and discuss the most efficient means for solving the problem. After programs have been coded and tested, each grour shculd share its results with the whole class; using a demo microcomputer and distributing listings of the program. Then from the same handout, have each student do one of the three short programs involving string functions: Emphasize the need for a flowchart and gond documentation.
4. Combie, : becture bi BASIC functions; discussing and
 functions ivis Handout \#3 intrisic Math Functions Worksheet and Hancut B^{4} - User-Defined Functions Worksheet, provide assignments fir both mathemāticā and user-defined functions. Discusss rè:uizs.
5. Have each student do to of five short programs involving user-définèd fanctions fromi Hāndout \#5 = User-Defined Functions Individuàl Problēms. Requirē flowchārts ānd documentation.
6. Present a lecture on high resolution graphics, demonstrating à few simple programs and distributing Handout \#6 = High-Resulucion Graphics Summary Sheet and Dēsign Grid. Hāndout \#7 - Sample Demo Hi-Res Graphics Problems provides three simple problems for demonstrating high-resolution graphics and on more complex problem that uses high-resolution graphics to graph polynomiàls of degree less than six. A samiple listing is included ās à possible solution to this latter problem. Puint out the use of the IF-THEN and FOR-NEXT control structures. single-dimension arrāys and subscripted variables; and subroutines.
7. Have pairs of students do the required graphics problems, while individuals may do the optional problems. Discuss and compare results; allowing students to run their programs for the whole class. Assign individuals to one of several Ionger artics programs, according to their level of skills. After the due date has passed, have students share their results. The t ini.in handouts may be helpfuí: Handout \#8 - Hi-Res Graphics Proc ${ }^{-}$, and Handout \#9 - Hi-Res Graphics Individual Programs.

Sample Assignments and Materials for Activity clustar nu:
The following pages in this activity çuster provide handouts that could be used in this course.

NAME
DATE
PERIOD
STRING FUNCTIONS WORKSHEET*

1. Rün the following program to see how RIGHT\$; LEFT\$ and MID\$ functions work:

5 HOME
$10 \mathrm{~B} \$=$ "SPACESARENOTINGLUDEDHERE"
20 PRINT RIGHT\$ (B\$,4)
30 PRINT MID\$ (B\$7;3)
10 PRINT LEFT\$ (B\$,6)
50 END
2. Include the following lines in the above program. Predict the output bēfore running the program.

15	FOR H $\equiv 1$ TO LEN (B\$)
20	PRINT LEET\$ (B \$,N)
30	PRINT RIGHT\$ (B\$,N)
40	PRINT MID \$ ($8 \$, 1,25-1$

3. Before uning t.al following program, predict the output.

5 HOME
10 :\$ = "UPERCALIFRGGILISTICEXPIALIDOEIOUS"
$15 \mathrm{~N} \equiv \mathrm{C},(x \bar{\prime})$
20 PRINT XS; "HAE":PRINT
25 PRINT N; " LETTERS OR_CBARACIERS.":PRINT
30 PRIITT "TYPE A NUTABER EROM_1 TO "; N:PRINT
35 PRINT "AND I WILL EAME THE CHARACTER": PRINT
40 PRINT "THAT IS IN IHAT POSITION:":PRINT
45 PRINT "AN INVALID NUMBFR STOPS THE RUN.": PRINT
50 INPUT "WHAT IS YOUR NUMBER ";A:PRINT
$=5$ IF $A<1 \quad O R \quad A>N \quad$ SOTO
60 IF INT(A)<SAGC-0 75
65 HOME:PRINT MID\$(X\$;A;1);" IS IN POSITICV ";A:PRINT
70 GOTO 50
75 PRINT "INYALID NUMBER!":ENB
4.
4. The following program uses the MIl an functions to decode a string. Predict the output before mi, \approx it.

```
10 HOME
20 X$= "EAVLELR YC OGWOSO DE ABTO YG RDAOSESS OFRI NHEA!Y !"
30 N= LFN:Y$)
40 FOR : TO 2
50 \because: }\because=\mathrm{ S TO N STEP 2
60 \therefore 
70 -
100 PRINT:NKNT
110 NEXT S
12G END
```

5. Run the following program:

10	FOR J = 1 TO 7
15	READ X $\$(\mathrm{~J})$
20	NEXT J
25	DATA "MONDAY", "TUESDAY", "WEDNESDAY"
30	DATA "THURSDAY", "FRIDA.'", "SATUURDAY", "SUNDAY"
35	PRINI "TYPE TRE FIRST LETTER OF ANY":PRINT
40	PRINI "DAY AND TRE COMPUTER WILL": PRINT
45	PRINT "NAME TRAT DAY.":PRINT
50	INPUT "WHAT LETTER DO YOU CHOOSE ? ";D\$:PRINT
60	FOR J ミ 1 T0 7
70	IF MID\$(X\$(J), 1, 1,)
80	PRINT X\$(J):" BEGINS WITR A ";D\$:PRINT
90	NEXT J
95	END

Change the program to:
a. Include a loop that gives the user a choice to continue selecting letters or to stop. When a character that does not represent a day of the week is picked, display an appropriate error message and stop the run.
b. Print the day which contains the second letter that the user picks (i.e., R=FRIDAY).
c. Print the name of the days that contain the mos: letters.

[^6]Handout \#2
Put 1 of 2
'uritions and Graphics

STRINE FUNCTIONS GROUP PROBLEMS

1. Entèr à string A\$ and use a loop $\overline{\text { co }}$ print the ASCII number of each of its̄ chārācters.*
2. Using the properly selected ASCII numbers in a DATA statement, print name of nur nigh school.
3. Entē the string TllREE!@\#\$\%STRING!@\#\$\%FUNCTIONS. Usē LEFT\$, MID\$ ard RIGHT\$ to print the phrase THREE STRING FUNCTIONS.*
4. Enter a string of any length and print the length and the ASCII number of its first and last sharacters.*
5. Enter a string $A \bar{A}$ and have the computer print the word with all the letter E^{\prime} s removed. $\theta \mathrm{r}$ input a string and output it without any vowels. Replace the vowels with a dash.
6. Write a program to accept a character string as input, and output the string with each character printed twice. Fur example DOLELE would appear às DD00UUBBEtEE.**

STRING FINCTIONS INDIVIDIAL PROBLEMS
 Do Lu.t. of the Following Progrunis

A. Write a program to accept a message as à character string and en= code the message. Construct the code as follows: Convert each character in the message to ASCII code, add 3; and convert the new ASCII code to its associated character. T!en modify the program so that the user will have the option of encoding or .eacocing à mēssagē.**
*From A Guide to Programming in Applescfé by Bruce Prestey, page 8.9; copyright (c) 1984 by Lawrenceville Press; Lawrenceville; New Jērsey. Reproduced with permission.
**From Programining in Apple BASIC by jōhñ H. Dielsín, Elaine S. Grossimãn, John P. Tucciarone, pages 277-278; copyright (ç) 1984 by CBS Collēge Publishing, New York, New York. Reproduced with permission.

Handout \#2
Page 2 of 2
Functions and Graphics
B. Enter a positive integer $N \$$ as $i t$ would be expressed in binary form. Have the computer prin+ the equivalent in the decimal system.*
C. Writē à progrām to āccept ān extend 1 message in sentence form and have the computer count the numbēr ol words in the sentence.
*From A Guide to Programming in Applésofe by Bruce Presley, page 8.9; copyrigft (c) 1984 by Lawirenceville Press; Lawrencevilie, New Jersey. Reproduced with permission.

Handout \#3
Functions ānd Graphics
NAME
DATE PERIOD

INTRINSIC MATH FUNCTIONS WORKSHEET*
Determine the output:

${ }^{\star}$ From Dupicating Masters -- Experiencing BASIC by Michael Mulcahy, page 11; copyright (c) 1984 by Media Materials, Inc., Baltimore, Maryland. Reproduced with permission.

Handout \#4

Functions and Graphics
NAME

PERIOB \qquad
USER-Di.i THED FUNGTfONS WORKSHEET*
Determine the output for this program

1. 10 DEF FNA $(X) \equiv X+8$
$20 \operatorname{DEF} \operatorname{FNB}(Y) \equiv 2+Y$
$30 W \equiv 5$
$40 \quad C \equiv F N A(W)+F N B(W)$
50 PRINT C
60 END

*From Duplicāting Másters -- Experiencing BASIC by Michā̄ Muicāhy, page 12; copyright (c) 1984 by Media Materials, Inc. ${ }^{2}$ Baitimore, Maryland. Reproduced with permission.

NAME
 DN:
 PERIOD

USER-DEFINED FUNCTIONS
 INDIVIDUAL ROBLEMS

You are not limited to the functions provided by BASIC. You may create your own: These programmer-defined functions are restricted to a length of one line each and should be declared at the beginning of the program. The name of the function must start with the letters FN followed by any letter. The argument must be a single numeric data name and the formula should contain that data name:

```
Ex 100 DEF FNA(x) = x + 3
200 LET X = 20
300 E = FNA(K)
4 0 0 ~ P R I N T ~ E ,
```

Do Two of the following Programs Using USER-DEFINED Functions.
1A. Write a program to convert Fahrenheit $\bar{t} \overline{\text { º }}$ Cēisius and Celsius to Fahrenheit:

OR (for students with background in trigonometry)
1B. Wiote a program to convert an angle from degree measurement to radian meāsurement.
2. Write a program to find the radius of a circle, given the area. Modify the problem with a user-defined function to round the radius off to hundredths.

3A. The Ajax Discount Center offers a 20 percent discount for a purchase of $\$ 100$ or more and a 15 percent discount for a purchase of less than \$100. Write a program that uses two one-line functions to determine the final selling price given the original price.*

OR (for students with background in trigunometry)
3B. Write \bar{a} progrām to produce two columns of the sines and cosines of complementary āngles from 1 to 90 . Be sure to employ a user-defined function.
${ }^{\star}$ From Programming in Apple BASIC by John J. Dielsi, Elaine S. Grossmiañ, John P. Tucciarone, page 312; Copyright (c) 1984 by CBS Gollege Pubiishing: New York, New York: Reproduced with permission.

Handout \#6
Page 1 of 2
Flutictions and Geraphics

HIGH-RESOLUTION GRAPHIES SUMMARY SHEET *

HCCLIORS		
$\begin{aligned} & \text { Risference } \\ & \text { Numbori } \end{aligned}$	HCOLOR	Restrictions
0	black	
1	grean	Plotted only ii columri location is an odd number.
2	parpla	Fiotted oniy if column location is an aven number.
3	white	Density and coler will differ for odd and even column locations, and will be influenced by adjacent colored points.
4	black	
5	orange	Plotted only if column location is an odd nuimber.
6	blue	Plotted only if cicluinn locãtion is ân even number.
7	white	Same as for $\mathrm{HCOLOR}=3$.

Note: The HCOLORs ean vary greatly, depending on the tuining of your color monitor or cuior teievision ser.

Graphics Screen

Home position on text screen obtainaci by this command sequence:
HOME
VTAB 21
HTAB 1
Sāmplē Progrām to ıllustratē Us̄ē of Each Grāphics Command
Command
Comment

10 HGR	Clears screen (except for bottom four toxt lines) and enters high-resolution graphtes mode.
$20 \mathrm{HCOLOR}=1$	Establishes green as the high-resolution plot color.
30 HPLOT 15.22	Plote a green point at the intersection of the :Sth column and the 22nd row.
40 HOME	Clears text screen and moves the cuirsor to the upper left corner of the full screen (not the text window).
50 TEXT	Resets the full screen to the text mede.

*From Graphics Discoveries -- Book I Jerry Johnson, page 17; copyright (c) 1984 by Creative Publicationss Palo Alto, California. Reproduced with permission.

*From Gräphics Dišoveriēs $==$ Book II by Jerry Johnsons pagē 32; copyright (c) 1984 by Crēātive Püblicātions, Pälo Alto, California. Reproduced with permission.

```
Handout #7
Pagē 1 of 5
Functions änd Graphics
```

NAME
DATE
PERIOD_-_-_-_—_-_
SAMPLE DEMO HI-RES GRAPHICS PROBLEMS*

1. Read this program and prejict the computer's output. Then check your prediction by running the program.
```
0 1 0 \text { HOME Predicted Output:}
0 2 0 ~ H G R ~
O30 HCOLOR = 1
040 FOR ROW = O TO 159
050 HPLOT O, ROW
060 !PLOT TO 279, ROW
0 7 0 ~ N E X T ~ R O W ~
0 8 0 ~ H C O L O R ~ \equiv 2 ~
090 FOR N \equiv O TO 100
100 HPLOT N,N
110 NEXT N
120 END
```

2. Do you like surprises? If so, you'll enjoy running this program. But before you do run it, predict what you think will happen.

010 HOME Predicted Output:
020 HGR
030 HCOLOR = 1
040 FOR ROW $\equiv 0$ TO 159
050 HPLOT O, ROW
060 HPLOT TO 279, ROW
070 NEXT ROW
080 HCOLOR $=4$
090 FOR COL $=0$ TO 279 STEP 2
100 FOR ROW $=0$ TO 159
110 HPLOT COL, ROW
120 NEXT ROW
NEXT COL
140 END
Whà does occur?

Can you explain why the results are so weird?

Handout \#7
Page 2 of 5
Functions and Graphics
Try making these changes:
90 FOR COL $\equiv 0$ TO 279 STEP 1
or
90 FOR COL $=0$ TO 279 STEP 3
or
90 FOR COL $=0$ TO 279 STEP 10
Now do some exploring on your own see what other visual effects you can create by making changes in the original program. Try new color combinations and different STEP values in line 90.
3. Read this program and predict the computer's output. Then check your prediction by running the program. Explure the effects of changing the program slightly.

10	HOME	Predicted Output:
20	HGR	Predicted Output.
30	FOR ROW $=0$ TO 159	
40	HCOLOP $=5$	
50	HPLOT_0; ROW TO ROW; θ	
60	HCOLOR $=2$	
70	HPLUT_ROW, 159 T0 159; R0W	
80	NEXT ROW	
90	END	

What will happen if you add these four lines?
54 IF ROW $+160>279$ THEN 60 Predieter output:
55 HPLOT 160; ROW TO ROW ∓ 160; 0
74 IF RCW + 160 ≥ 279 THEN 80
75 HPLOT ROW + 160; 120 T0 279; ROW
What will happen if you chãnge lines 50 and 55 to:
50 HPLOT 0, 159 = ROW T0_159 - ROW, e Predicted Outout:
55 HFLOT 160, $120=$ ROW io $279-$ ReN; θ

[^7]Handout \#7

Page 3 of 5
Functions and Graphics
NAME
DATE
PERIOD \qquad
SAMPLE DEMO HI-RES GRAPHICS PROBLEM TO GRAPH POLYNOMIALS


```
    4 5 0 ~ P R I N T
    4 6 0 ~ P R I N T ~ " E N T E R ~ T H E ~ C O L U M N : " ; ` ~ I N P U T ~ O X ~
    4 7 0 ~ P R I N T ~ " ~ T H E ~ R O W : " ; : ~ I N P I T T ~ O Y ~
    480 PRINT : PRINT : PRINT
    4 9 0 ~ P R I N T ~ " W H A T ~ I S ~ T H E ~ S C A L A R ~ \forall A L H E ~ F O R ~ T H E ~ C O O R D I N A T E : ? " ,
    500 PFIINT
    510 PRINT "ENTER THE SCALAR FOR"
    520 PRINT
    530 SRIAT " THE X-EO0RDENATE:";: LISPIJT SX
    540 PRINT " THE Y-CEORDINATE:";: INPUT SY
    550 REM
    550 HOME
    570 REM INFUT MODULE FOR EQJATION YOU WANT GRAPHED
    500 PRINT : PQINT
    550 PRINT "WHAT DEGREE POLYNOMIAE WOULD YOU LIKE GRAPHED? (EETWEEN G
        AND 5)";
    500 INPUT N
    6% REM
    62G REM LOOP TO INPUT COEFFICIENTS OF POLYNOMIALS
630 REM
    O4O KEM STATEMENT TO INPUT CONSTANT TERM OF POLYNOMIAL
    6.50 IF N = 0 THEN GOTO 720
    660 PRINT "WHAT IS THE COEFFICIENT OF:"
G70 FOR A = N TO 1 STEP = 1
5 8 0 ~ P R I N T ~
6 9 0 ~ P R I N T ~ " X ~ T O ~ T H E ~ " ; A ; " t i n ~ P O W E R " ; : I N P U T ~ P ( A ) ~
700 NEXT A
7 1 0 ~ P R I N T ~
7 2 0 ~ P R I N T ~ " W H A T ~ I S ~ T H E ~ C O N S T A N T ~ T E R M " ; : I N P U T ~ P ( 0 ) ~
730 ON N + 1 GOSUE 1220,1260,1300,1340,1380,1420
7 4 0 ~ R E M
750 REM DRANING AXES
760 HGR
770 HCOLOR= 3
780 HPLOT O;OY TO 2;9;OY
790 HPLOT OX;0 TO OX:159
800 REM
810 REM LOOP TO PRINT FOLYNOMIAL IN TEXT WFNOOW
820 HOME
830 VTAB (21)
840 PRINT "y = i";
850 REM CHECK FOR CONSTANT POLYNOMIAL
860 IF N \equiv O THEN GOTO 940
870 FOR A = N TO 1 STEP = 1
880 REM CHECK FOR COEFFICIENTS OF O AND 1
890 IF P(A) \equivO THEN GOTO 930
900 IF P(A) \equiv 1 THEN GOTO 920
910 PRINT P(A);
920 PRINT "x^";A;" + ";
9ふ人0 NEXT A
9 4 0 ~ P R I N T ~ P ( 0 )
950 REM
1 0 3
```

 0 9 6 0 ~ R E M ~ P L O T T I N G ~ P O I N T S ~ O F ~ P O L Y N O M E A L ~
 0 9 7 0 ~ F O R ~ S C ~ \equiv 0 ~ T O ~ 2 7 9 ~ S T E P ~ 2 , ~
 0980 LET X = (SC = OX) / SX
 0990 LET Y = FNC(:)
 1000 LET SR \equiv OY = SY * Y
 1010 IF SR<0 OR SR>159 THEiv 1030
 1020 HPLOT SC,SR
 1030 NEXT SC
 .040 REM
 1050 REM OPTION TO CONTINUE
 1060 PRINT : PRINT
 1070 PRINT "DO YOU WANT TO CONTINUE";: INPUT R$
 1080 IF R$ = "YES" OR R$ = "Y" THEN GOTO 390
 1090 IF R$ = "NO" OR R$ = "N:" THEN II30
 1100 PRINT "INPUT DOES NOT REGISTER!...TRY AGAIN"
 1110 GOTO 1070
 1120 REM ENDING SCREEN
 1130 TEXT : HOME
 1140 VTAB (15) : HTAB (18)
 1150 FEASH
 1160 PRINT "ALOHA"
 }. }170\mathrm{ NORMAL
 1180 REM
 1190 ENO
 1200 REM
 1210 REM SUBROUTINES FOR POLYNOMIALS
 1220 REM POLYNOMIAL OF ZERO DEGREE
 1230 DEF FN C (X) =P(0)
 1240 RETURN
 1250 REM
1260 REM POLYNOMEAL OF FIRST DEGREE
1270 DEE FN C (X) =P(1) \star X + P (0)
1280 RETURN
1290 REM
1300 REM POLYNOMIAL OF SECOND DEGREE
1310 DEE FN G(X)=P(2) \star X^2 + P(1) * X + P(0)
1320 RETURN
1330 REM
1340 REM POLYNOMIAL OF THIRD DEGREE
1350 DEF FN C (X) = P(3) \star x^3 + P(2) \star X^ ^ + P(1) * X + P(0)
I360 RETURN
1370 REM
1380 REM POLYNOMIAL UF FOURTH DEGREE

```

```

1400 RETURV
1410 REM
1420 REM POLYNOMIAL OF FIFTH DEGREE

```

```

1440 RETURN

```
```

Handout \#8
Page 1 of 2
Functions and Graphics
NAME
\#ATE
PERIOB

```
\(\qquad\)

HI-RES \({ }^{\text {GRRPHICS PROBLEMS* }}\)

\section*{Required Problem.}
1. Write a program that will:
(A) start at an anchor point locaied at column 5, row 155 .
(B) draw a progression of nested squāre frames in white (HGOLOR \(\equiv 3\) ). The sides of each nūw squäre frāme are 5 "points" longer than the sides of the previous ṣquäre frāme.
(C) have the anchor point sēve ās the lower-left corner of each square.
(D) stop when the top of the graphics screen is reached.

Hint: Figure out how the locations of the four vertices of the square frame are related to each other.


Optional Probiem.
2. Change the program in problem 1 so that it repeats itself continuously and incorporates these changes:
(A) t̄he square frames are orange.
(B) a new anchor point is selected at random for each new progression of nested squares.

Note: I \(\bar{t}\) ís bés \(\bar{t}\) to limit the row and columin values of the anchor points to multioles of 5 .

Requirèd Problem.
3. A rectangular parālēepiped is a solid figure with six rectangular faces. Write à progrāí thāt will draw the outline of a rectangular parallelepiped in white (HCOLOR \(=3 \%\) The program should allow you to input the row and columin values of three key vertices \(A\); \(B\), and \(C\).

Hint: Analyze the drawing below and figure out the locafions of the remaining five vertices. Remember that once the location of vertex \(A\) is chosen, the available locations of vertices \(B\) and \(C\) will be restricted somewhat.

\begin{tabular}{|c|c|c|}
\hline Vertex & Column & Row \\
\hline\(A_{1}\) & \(\overline{C 1}\) & \(\overline{R 1}\) \\
\(B\) & \(\bar{C} 2\) & R 2 \\
\(\bar{C}\) & \(\overline{\mathrm{C}}\) & R 3 \\
\hline
\end{tabular}

\section*{Optionā Problem.}
4. Change the program in problem 3 so that the locations of vertices \(\bar{A}, \bar{B}\), and \(E\) are chosen randomly. After one rectangular parallēepiped is drawn, you should be able to press the RETURN key in order to cleã the screen and draw a new parallelepiped.
*From Grāphics Discoveries --Book II by Jerry johnson, pages 35, 37 ; copyright (c) 1984 by Creative Publications, Palo Alto, California. Reproduced with permission.

NAME
DATE
PERIOD \(\qquad\)
HI-RES GRAPHICS INDIVIDUAL PROGRAMS
1 Complete the drawing of à chessboard by shading in every other square in white using high-resolution graphics.

For extra credit you míght draw a few of the chess pieces under your picture of the board!
2. This shape may be drawn without iffting your pencil from the paper or retracing any lines: Simulate the solution to this exercise using high resolution graphics.

3. Write a program Shat produces a slide show of optical illus ons. Some good illusions to include are:
a. the Zollner illusion
b. the Necker Gube illusion
c. the Poggendorf illusion
d. the Ponzo or railway lines illusion
e: the Hering illusion and its converse
f. Penrose's Impossible Triangle

These and other puzzling illusions can be found in the following references:

Gilliam, B. "Geometrical Illusions:" Scientific American; (January, 1980), pp. 102-111.
Gregory, R. "Visual Iliusion:" Scientific American; (November, 1968); pp: 66-76.

Gregory, R. The Intelligent Eye: New York: McGraw-Hill, 1970.
tanners, E., ed. Illusions: New York: Holt; Rinehart; and Winston, 1977.
tevine, S: "Optical Allusions:" Grade Teacher: (October, 19\%0), pp: 74-77.*
*From Graphics Discoveries -- Book 11 by Jerry Johnson, page \(5 \overline{6}\); copyright (c) 1984 by Ereative Publications, Palo Alto, Ealifornia. Reproduced with permission.
```

Handout \#9
Pagè ? of ?
Functions and Graphics

```
4. Write a program to produce a design sinilar to this. Hāve ini progran draw the design several times using different colors each time. You are to use high-resolution graphics

5. A seven segment display is used to represent à number un à digitaj clock. The seven segments are arranged as snown below:


When certäin segments are lit, they form a numeral. For example, if a figure five is to be represented, then segments \(0,2,3 ; 5\), and 6 vould be lit. If oach segment is assigned a value of a power of two as shown above, it is possible to encode the form of a numeral as the sum of the values of the segments that must be lit to represent that numeral. For example, the encoded information of a figure five would be the sum of the segments \(0,2,3,5\) and 6 or \(1+4+8+32+64=109\).

To decode a number like 109, successively divide it by two. If the result of the first division is not an integer, then the segment numbered 0 should ie lit. Again take the INT of the result. Continue this process of dividing by two and checking the result seven times (once for each segment).

Write a program to have the computer count slowly from \(\theta\) to \(\theta\) using the seven segment display described above. For extra fieuit, modify the program to make it count to \(99 . *\)

\footnotetext{
*From A Guide to Programming in Applesoft EASIC by Bruca Presley; page 6.21; copyright (c) 1984 by Lawrencevil? Press, Lawrenceville, New jersey. Reproduced with permission.
}

SAMPLE ACTIVITY CLUSTER \#5
FILE HANDEING ANE TERM PROJECT

\section*{Iopics:}
1. Sequèntiāl filés
2. Random or Dirēt Files
3. Term Project

\section*{Ciass room Management:}

The work on files cān be done by pairs and teams of students, but the term project should be done individually.

\section*{Materials:}

Demonstration nicrocomputer and large-screen monitor;
Videotape player and the videotape, "File Structures";
Reading material on Text Files, such as:
Apple Text Filēs by Dävid Miller chapters 1-3;
Data File Programming in BASIC -- A Self-Teaching Guide by
Handouts.

\section*{Time for Activíties:}

Approximately one to four weeks for file handing could be provided, depending on the depth to which the teacher plans taking his or her students. Four to six weeks could be allowed for the term project; specific days should be set for work on the projects.
Teacher Preparation and Procedures:
Preview the videotape and prepāre the needed handouts: Gūther an assortment of topic ideas for the term projects: All sample materials for these activities are located in the Sample Assignments and Materials for Activity Cluster \#5.
1. Introduce text files and file handing via a lecture and reading āssignment. Discuss related quēstions.
2. To familiarize students with the actual process of creating and using data files, have pairs of students type in a couple; simple, sample programs; using a sequential file. Distribute Handout \#1 - Sample Programs Using Sequential Files. Remind students of the purpose of the CHR\$ (4) string function when handing files in Applēsoft BASIC.
3. Show the videotape, "File Structures;" and have students answer questions from Handout \#2 - Questions from the Videotape; "File Structures:" Take time to discuss the answers.
4. Assign pairs of students one of two programs that create and read back sequential data files, found in Handout \#3 - Creating and Reading Back Sequential Data Files. Require a flowchart and good documentation. The solutions, adjusted to Applesoft BASIC, may be removed from the handout or given to students after they have written their own program. As various versions of B.ASIC open, write and close files differently, appropriate adjustments must be made for your particular system. For students that may want to include a menu in the ir program, a sample program and hierarchy chart are provided as a guide for this arrangement in Handout \#4Creating and Mantitaining Sequential Files Ūsing Menus. The program
 other systems.
5. After exposing stuaents to the differences between random access files and sequential files; provide à series of three interrelated programming problems that create and read random access data files. Rēer to Handout \(\# 5\).. Random Access Data Files. The sample listings may be removed from the handout or given to students after they have written their own program: Assign all pairs of students to one of the t'iree problems according to their level of skills. For the class to gain experience in a real programming environment, organize teams with tiree pairs of students--each pair responsible for one of the three programs but the entire team responsible for the overall system. Emphasize the need for cooperation within pairs and among team members in planning; des:gning; coding and testing their programs: Have teams appoint one member as their lead programmer--not to do all the work but to coordinate the three pairs of membars within tie team and assist where needed.
6. As an option; discuss the advantages of an indexed sequential file over a regular sequential file or random acceis file. Assign Handout \#6 = Ereating an Indexed-Sequential File. A listing of à possible solution to the problem for TRS -80 ; Model 4 is included.
7. A term project could be assigned any time during the second semester; after students have become more adept at BASIC programming skills. Handout \#7 = Term Project could be distributed when apropriate.

Sample Ássignments and Materiā̄ for Activity Clustē \#5:
Thè followirig pages in this áctivity clūster provide hāidouts that could be used in this coursē.

Handout \#1
Page 1 of 2
File Handing and Project
NAME
DATE

SAMPLE PROGRAMS USING SEQUENTIAL FILES

\section*{Example 1}

The program below is divided into three sections. The first section allows the user to input the name of the file to be created. This name is storeu in \(F \$\). Thereafter, rather than typing this name with each file command, \(F \$\) is used. See 1 ines 2060, 2070, 2080, 2090; and 2140.

0080 DIM A\$(100)
0090 D\$ \(=\) CHR \(\$(4)\)
0100 REM ENTER FILE NAME
0110 REM
0120 HOME
0130 PRINT "ENTER NAME OF FILE TO BE CREATED:"
0140 VTAB 4: HTAB 15: INPUT F\$
0150 PRINT \begin{tabular}{l} 
\\
\hline
\end{tabular}
1000 REM INPUT DATA INTO AN ARRAY TO BE RECORDED ON FIEE
1010 REM
\(1020 \mathrm{C}=0\)
1025 VTÄB 6
1030 PRINT iI RECORD \({ }^{i} ; C+1\);
1040 INPUT " ";A\$(C + 1)
1050 IF \(A \$(C+1)=1 "\) THEN 2020
1060 C \(=C+1\)
1070 GOTO 1030

2000 REM TRANGFER ARRAY DATA TO FILE
2010 REM
2020 HCME
2030 VTAB 13
2040 PRINT C;" RLCORDS HAVE BEEN CREATED"
2050 VTAB 15: PRINT "FOR FILE "; F\$
2060 PRINT D\$;"OPEN ";F\$
2070 PRINT D\$;"DELETE ";F\$
2080 PRINT D\$:"OPEN ";F\$
2090 PRINT D\$;"WRITE ";F\$
2100 PRINT E
2110 FOR N = 1 TO C
212' PRINT A\$(N)
2130 NEXT N
2140 PRINT D \(\ddagger\);"CLOSE "; \(;\) \$
The second section of the program stores the information for the file and
A.p. Line 80 allows for a maximum of 100 such records. If a lārger array size were required, only line 80 would hāve to be modified. The end of a
 in \(11 \bar{n}\) e 1060 keeps track of number of records to be written to the file, and line 1050 terminates this ection. When all the data hāve been entered, the user will just hit the RETURN key and, as a result, the null string stored in the las \(A \$(C+1)\) will indicate that no more data ā \(\overline{\text { a }}\) e to be entered. Note that since tre counter in line 1060 is not incremented in this case; the null string aill not be included as part of the text file.

The third section of the pogram takes tife data accumulated in the serond section and stores it on the diskette. The first data item recorded on the diskette is \(G\), the number of records in the file. Remember, this data item is stored as record e in this sequential file. The remaining data items are stored by using the joop in lines 2110 to 2130. Since the PRINT statement in this loop follows a WRITE file command, it outputs data to the file designated \(\mathrm{F} \$\).

This example iifustrates one metnod of ereating a sequential data file. In order to access the information stored on the file; the programmer must know how the file wàs created.

The example below indicates how one can access a file created in manner similar to the method used in Example 1. Note that the first record read is \(A\), the variablo representing the total number of records in the file.

Example ?
```

0 0 8 0 ~ D I M ~ E \$ (1 0 0) ~
0090 D\$ = CHR$(4)
Gi00 REM ENTER FILE NAME
0110 REM
0 1 2 0 ~ H O M E ~
0130 PRINT "ENTER NAME OF FILE TO BE READ:"
0140 VTAB 4: HTAB 15: INPUT F$
0150 PRINT
0160 REM
1000 REM READ DATA FROM FILE
1010 REM
1020 PRINT D$;"OPEN ";F$
1030 PRINT D$;"READ ";F$
1040 INPUT A
1050 PRINT "THERE ARE ";A;" RECOPDS IN FILE .";
1060 INVERSE
1070 PRINT F\$
1G30 NORMAL
1N90 PRINT
1100 FOR C = 1 TO A
1110 JNPUT B$(C)
112C PRINT "RECORD ";C;": ";B$(C)
1130 NEXT S
1140 PRINT O$;"CLOSE ";F$

```

\section*{Handout \#2}

File Hānding and Project
NAME
DATE
PERIOD
QUESTIONS FOR THE VIDEOTAPE, "File Structures"
1. How does data storage on disk differ from dātā storāge on tāpe?
2. How are sequential files different from random filess?
3. For what types of applications are sequential files best suited?
4. In Applesoft BASIC; what purpose does the string function CHR\$(4) serve?
5. Explain the following file commands:

OPEN READ
CLOSE
WRITE
FILE
 provided for accessing rañom files?
7. Of what value is the commañ MON? Whā subcomands can be entered under MON?


GREATING AND READING BACK SEQUENTIAL DATA FILES天

IA Write à program co create a data file called GROCERY that stores vour grocery shopping iist. Include the description or ni.me of each grocery item (maximum of twenty characters) and a numeric value telling the quantity of thāt item to buy. Store at jeast six datasets or entries in thē file. Remārk stātements should identify the program and variāb?ēs; such às:

100 REM GROCERIES
110 REM
120 REM
130 REM VARIABLES USED
140 REM
150 REM
160 REM
180 REM
200 PEM
I\$ \(\equiv\) ITEM DESCRIPTION
Q = QUANTITY TO ORDER
FILES USED
F\$ = U'SER ENTERED INPUT FILE

1 B Write a companion program to display the contents of GROCERY.

\section*{114}

Handout \#3
Page 2 of 6
File Handling and Project
Possible solutions to \(1 \bar{A}\) and \(\overline{1} \bar{B}\) Using Applesoft BASIC

1A GROCERY SHOPPING LIST
```

110 REM PROB 1A SOLUTION (GROCERY LIST)
120 REM
130 REM INTRODUETORY MODULE
140 REM VARIABLES USED
150 REM I\$ = ITEM DESCRIPTION
150 REM Q = QUANTITY TO ORDER
170 REM
180 REM FILES USED
190 REM F\$ = USER ENTERED INPUT FILE
200 REM
220 D\$ = CHR$(4)
230 INPUT "ENTER NAME OF INPUT FILE"; F$
240 PRINT D$;"OPEN ";F$
250 REM
280 REM DATA ENTRY ROUTINE
290 REM
300 PRINT "ENTER 'STOP' WHEN FINISHED"
3 1 0 ~ P R I N T
320 INPUT "ENTER_ITEN DESERIPTION:"; I\$
330 IF I\$ = "STOP" THEN 480
340 IF LEN(I$) = 0 THEN PRINT "PLEASE ENTER A DESCRIPTION OR 'STOP'i": GOTO
320
350 IF LEN(I$) >20 THEN PRINT "PLEASE LIMIT DESCRIPTION TO 20 CHARS, AND
REENTER": GOTO 320
360 INPUT "ENTER QUANTITY:"; 0
3 7 0 IF Q = 1 AND Q < 10 THEN 440
380 PRINT "YOU ENTERED A QUANTITY OF "; Q
390 INPUT "IS THAT WHAT YOU WANTED?"; R\$
400 IF LEFT$(R$,1) = "N" THEN 360
4 1 0 ~ R E M
4 2 0 ~ R E M ~ W R I T E ~ T O ~ F I L E ~ R O U T I N E ~
4 3 0 ~ R E M
440 PRINT D$;"WRITE ";F$
4 4 5 ~ P R I N T ~ I \$ ~
4 5 0 ~ P R I N T ~ Q ~
4 5 5 ~ G O T O ~ 3 2 0 ~
4 6 0 ~ R E M
4 7 0 ~ R E M ~ C L O S E ~ F I L E ~ R O U T I N E ~
4 8 0 ~ P R I N T ~ D \$; " C L O S E ~ " ; F \$ ~
4 8 5 ~ R E M
4 9 0 ~ P R I N T ~ " F I L E S ~ C L O S E D . " ~
500 END

```

Handout \#3
Page 3 of 6
File Handling and Project
310 REM CLOSE file routine
320 PRINT D\$;"CLOSE ";F\$
330 END

Handout \#3
Page 4 of 6
File Handing and Project
2A Write one progrâm and ūe it to create three dífferent dāā fīes called LETTER1, LETTER2, ān LETTER3. Each file should contain the text of à form lētēr with at leãst three lines of text per letter. Gach line of tēxt in thē lēttērs is to be enterad and stored as one dataset or entry.

100 REM LETTERS
110 REM
120 REM VARIABLES USED
130 REM R\$ \(\equiv\) TEXT LINE
140 REM F\$ \(\equiv\) FILE NAME VARIABLE
150 REM
160 REM FILES USED
170 REM LETTER (PLUS F\$ WHICH IS USER SELECTED)
180 REM

2B Write a companion program to display the data file above selected by the user:

Handout \#3
Page 5 cf 6
File Handing and Project

\section*{Possible Solutions to \(2 A\) and \(2 B\)} Using Applesoft BASIC
```

2A LETTSRS
100 REM PROB 2A SOLUTION (LETTERS)
110 REM
120 REM VARIABLES USI:D
130 REM R\$ = TEXT L:TNE
140 REM F\$ = FILE NAME VARIABLE
150 REM
160 REM FILES USED
170 REM LETTER (PLUS F\$ WHIEH IS USER SELECTED)
180
190 REM INITIALIZE FOUTINE
200
215 D\$ 三 CHR$(4)
220 INPUT "ENTER_FILE NUMBER:"; F$
230 LET F\$ E "LETTER" + F\$
240 PRINT D$;"OFEN ";F$
250 REM
260 PRINT "ENTER TEXT LINE OR 'STOP'"
270 INPUT R\$
280 IF R\$ = "STOP" THEN 330
290 PRINT D$;"WF:ITE ";F$
295 PRINT R\$
300 GOTO 260
310 REM
320 REM CLOSE FILE ROUTINE
330 PRINT D$;"CLOSE ";F$
340 PRINT "FILE ";F\$;" CLOSED."
350 END

```

Handout \#3
Page 6 of 6
File Handing and Project
```

2B LETTERS DISPLAY
100 REM PROB 2B SOLUTION (LETTERS FILE APPLICATION)
110 REM
120 REM VARIABLES USED
130 REM R\$ \equiv TEXT LINE
140 REM F\$ \equiv FILE NAME vARIABLE
150 REM
160 REM FILES USED
170 REM LETTER (PLUJ F\$ WHICH IS USER SELEGTED)
180 REM
190 REM INITIALIZE ROUTINE
195 REM
200 CLEAR
2 0 5 ~ D \$ ~ = ~ C H R \$ ~ (4) ~
210 INPUT "ENTER_FILE NUMBER:"; F\$
220 LET F\$ = "LETTER" + F\$
230 PRINT D$;"OPEN ";F$
240 REM
250 REM READ/PRINT FILE CONTENTS ROUTINE
255 REM
260 PRINT D$;"READ ";F$
265 INPUT R\$
270 IF R\$ = "STOP" THEN 320
280 PRINT R\$
290 GOTO 265
300 REM
310 REM CLOSE FILE ROUTINE
320 PRINT D$;"CLOSE ";F$
330 PRINT "FILE ";F\$;" CLOSED."
340 END

```
*Adapted from Data File Programming in BASIC by LeRoy Finkel and Jerald R. Brown; pages 113-114, 124, 126, 128-129 ând 133-134; copyright (c) 1981 by John Wiley and Sons, Inc.; New York; New York. keproduced with permission.

119
119

Hāndout \#4
Pagè 1 of 5
Filē Hāndling and Project
NAME
DATE
PERIOD

\section*{CREATING AND MAINTAINING SEQUENTIAL FILES USING MENUS Hierarchy Chart Class Files}


Handout \#a
Page 2 of 5
File Handling and Project

\section*{CLASS FItES PROGRAM}

```

1040 PRINT " i CREATE AND ADD NAMES TT CLASS L:IST"
1050 PRINT " 2 SORT NAMES IN CLASS LIST'
1060 PRINT " 3 CHANGE/CORRECT NAME(S) ON CLASS LIST"
1070 PRINT ii 4 DELETE NAME(S) FROM CLASS LIST"
1080 PRINT ii 5 PRINT/DISPLAY NAMES ON CLASS LIST:
1090 PRINT "i S R RETURN TO MAIN MENU"i
1100 PRINT: PRINT "ENTER A NUMBER 1 THROUGH 6: "
1110 C$=INPUT$(1)
1155 MENU SELECTION (1) (2) (3) (4) (5) (6)
1120 ON INSTR("123456", ($) GOTO 2000, 3000, 4000, 5000, 6000, 500
1130 SOUND 2; 0: PRINT'"INVALID NUMBER. PLEASE RE-ENTER 1, 2, 3, 4, 5 OR ó"
 ; : GOTO 1110
REM***GREATE ANO ADD NAMES TO CLASS LIST***
PRINT "EREATING/UPDATING CLASS LIST FOR PERIOD: "; F$
OPEN "E", 1, F\$
CONTINUE$="Y゙"
WHILE CONTINUE$="Y"
GLS: PRINT
EINE INPUT "ENTER STUDENT'S NAME "; STU.NAME$: PRINT
 LINE INPUT "ENTER STUDENT'S GRADE LEVEL "; GRADE$
WRITE \#1, STU.NAME$; GRADE$
PRINT: INPUT "MORE NAMES TO ENTER (Y/N) "; CONTINUE\$
WENB
CLOCE \#1
GOTO 1000
I
REM**SORT CLASS LIST*天*
I LOAD C'ASS FILE INTO TABLE
OPEN_"I", 1,F\$
WHILE NOT EOF'(1)
LET S=S\mp1
INPUT \#I, STU NAME$(S), GRACE$(S)
WEND
CLOSE \#1
CLS: PRINT_TAB(10) "SORTING"
FOR S1\equiv1 TO S-1
FOR S2\equivS1+1 TO S
IF STU.NAME$(S2) =STU.NAME$(S1) THEN GOTO 3120
SWAP STU.NAME$(S1), STU:NAME$(S2)
SWAP GRADE$(S1), GRADE$(S2)
NEXT S2
NEXT S1
CLS: PRINT TAB(10) "SORT COMPLETED"
REM***REWRITE SORTED CLASS EIST TO FILE***
3160 OPEN "O", 1,F\$
3170 FOR N=1 TO S
3180 WRITE \#1, STU.NAME$(N),GRADE$(N)

```

Handout \#4
Page 4 of 5
File Handling and Project
```

 3 1 9 0 ~ N E X T ~ N ~
 32.00 CLOSE #1
 3210 GOTO 1000
 3220
 4000 REM***GHANGE/GORRECT NAMES ON CLASS LIST***
 4005 1 LOAD ELASS FILE INTO TABLE
 4010 OPCN "!"; 1; F$
 4015 S.
 4020 WHILE_NOT EOF(1)
 4 0 3 0 ~ L E T ~ S = S + 1
 4040 INPUT #1; STU-NAMES$(S); GRADE$(S)
 4 0 5 0 ~ W E N D ~
4 0 6 0 ~ C L O S E ~ \# ~ 𤣩 ~
4 0 7 0 ~ 1
4 0 8 0 ~ C L S ~
4085 N=0
4090 LINE INPUT "ENTER EAME OF STUDENT YOU WISH TO CHANGE "; S.NAME\$
4 0 9 5 ~ N A M E . ~ F O U N E \$ = " N " ~
4100 WHILE NAME-FOUNB$<<S "Y"
4105 ON ERROR GOTO 5500
4 1 1 0 ~ L E T ~ N = N \mp 1
4115 ON ERROR GOTO 5500
4120 IF S.NAME$ < \SSTU.NAME\$(N) THEN 4240
4130 LET NAME.FOUND $="Y"
4150 PRINT "THE STUDENT'S NAME IS "; STUU:NAME$(N)
4160 PRINT "GRADE IS "; GRADE$(N)
4170 INPUT "PRESS < ENTER > TO SONTINUE"; R$
4180 PRINT "IF YOU ARE GHANGING NAME AND/OR GRADE, TYPE IN THE CORRECT
DATA
4190 PRINT "OTHERWISE, HIT < ENTER > KEY": PRINT
4200 LINE INPUT S.N\$
4210 LINE INPUT GR\$
4220 IF S.N\$ = THEN_STU-NAME$(N)=STU-NAME$(N)
ELSE SIU.NAME$(N)=S.N$
4230 IF GR$E"" THEN GRADE$(N)=GRADE\$(N)
ELSE GRADE \$ (N)=GR\$
4 2 4 0 ~ W E N D ~
4270 '
4 2 8 0 ~ R E M * * * R E I N R I T E ~ F I L E ~ T O ~ D I S S K * * * ~
4290 OPEN ": 1, F\$
4300 FOR N= - -0 S
4310 WRITE \#1,STU.NAME$(N),GRADE$(N)
4 3 2 0 ~ N E X T ~ N ~
4330 CLOSE \#1
4340 GOTO 10NO
4 3 5 0
5000 REM***DELETE_NAMES FROM CLASS LIST'"
5005 ' LOAD CLASS EILE INTO TABLE
5010 OPEN "II', 1, F\$

```
```

 5020 LET S=0
 5030 WHILE NOT EOF(1)
 504J LET S=S+1
505C INPUT \#1; STU.NAME$(S); GRADE$(S)
5060 WEND
5070 CLOSE \#1
5080 `
5090 CLS

5100 LINE INPUT "ENTER STUDEN; NAME YOU WISH TO OELETE "; SN\$\$
5100 N=0
5115 FOUND$="N"
5120 WHILE FOUND$<>"Y"
5125 ' ON ERROR GOTO 5500
5 1 3 0 ~ N = N + 1
5140 IF SN$<<SSTU.NAME$(N) THEN GOTO 5170
5150 FOUND$="Y"
5160 STU.NAME$(N)="ZZZ"
5170 WEND
5200
``````
5220 OPEN "0"; 1; F\$
5230 FOR N=1 TO S
5250 WRITE \#1; STU.NAME$(N), GRADE$(N)
5260 NEXT N
5270 CLOSE \#1
5280 GOTO 1000
5290:
5500 Pi-: T "NAME NOT FOUND": FOR C=1 TO 1000: NEXT C: RESUME 1000
6000 REM:`**PRINT/DISPLAY CLASS LIST***
6010 A$=" ##: \ \ \ \ \
6 0 2 0 ~ C L S ~
6030 PRINT " BISPLAY CLASS LIST"
6040 PRINT: INPUT "DO YOU WANT A. HARD COPY (Y/N)"; R$
6050 IF R$="Y" THEN SYSTEM "LINK *DO *PR"
6 0 6 0 ~ P R I N T ~ T A B ( 1 5 ) ~ " C L A S S ~ L I S T " : ~ P R I N T ~
6070 PRINT TAB(15) "PERIOD "; F$ : PRINT
6 0 8 0 ~ O P E N ~ " I " ; ~ 1 ; ~ F \$ ~
6090 PRINT " NAME GRADEI': PRINT
6100 NO=1
6 1 1 0 WHILE NOT EOF(1)
6120 INPUT \#1; STU:NAME$; GRADE$
6130 IF STU.NAME$="ZZZ" THEN GOTO 6160
6140 PRINT USING A$; NO; STU-NAME$; GRADE$
6150 NO=NO+1
6 1 6 0 WEND
6165 IF R\$="Y:1 THEN SYSTEM "RESET *DO *PR"
6170 CLOSE \#1
6180 GOT0 1000
6190 '
```

RANDOM ACCESS DATÄ FILES末

1. Write à progrām to create a rendom accéss data file, named PRODUCT, that contains the inventory of products carried by àn imaginary business. Each random access record contains the following data for one item of inventory in the order shown below. Numbers in parentheses indicate maximum string lengths.
```
\(\mathrm{P} \$=\) product number (4)
```

I $\$=$ description of inventory item (20)
S\$ = supplier (20)
$\bar{L}=$ reorder point (how low the stock of item cañ bé before reordering)
$Y=$ reorder quantity
$\mathrm{Q}=$ quantity available (currently in stock)
$C=$ cost (from supplier)
$U=$ unit selling price (what the item is sold for)

Here is the introductory module:

```
100 REM PRCB 1 SOLUTION
110 REM
120 REM VARIABLES USED
130 KEM P$ = PROD. NO. (4)
140 REM I$ = ITEM DESCRIPTION(20)
150 REM S$ = SUPPLIER (20)
160 REM L = REORDER POINI
170 REM Y = REORDER QUANTITY
180 REM Q = QUANTITY
190 REM C = COSI
200 REM U = UMIT SELLING PRIEE
210 REM
220 REM FILES USED
230 REM PRODUCT 'PANDOM AEEESS FIEE)
240 REM
```

Using the prog ^am, create à rairiom access file Make up your own data for 20 records (inrentory items) aid enter them into the file; This file wili be needed in problems \#2 and \#3 for other teams to use.

A flowchart aid good documbintation āre required.

Handcut \＃5
Page 2 of 9
File Handling and Project
Possible Solution to＿Problem 1
Using Applesoft BASIC

```
100 REM PROB 1 SOLUTION
110 REM
120 REM VARIABLES USED
130 REM P$ = PROD. NO. (4)
1.40 REM I$ = ITEM DESCRIPTION(20)
150 REM S$ = SUPPLIER(20)
160 REM L = REORDER POINT(4)
170 REM Y = REORDER QUANTITY(4)
180 REM Q = QUANTITY IN STOCK(4)
190 REM C = WHOLESALE COST(4)
200 REM U \ UNIT SELLING PRICE(4)
210 REM N = RECORD NUMBER DESIRED
220 REM I = INDEX FOR ARRAY
230 REM
235 KEM
240 REM PRODUCT (RANDOM ACCESS FILE)
250 REM INITIALIZE ROUTINE
260 GEEAR
265 日$ = CHR$(4;
270 PRINT 日$;"OPEN PRODUCT,L64"
280 INPUT "HOW MANY RECORDS DO YOU WANT?"; N
285 BIM P$(N);京(N);S$(N);L(N);Y(N);Q(N);C(N);U(N)
290 REM
300 REM EATA ENTRY MODUEE .. DATA ENTRY TESTS OMITTED
305 FOR I = 1 TO N
310 INPUT "ENTER PROBUCT NUMBER (4 BIGITS):"; F$(I)
320 REM*\star* DATA_ENTRY.TESTS GO HERE
330 INPUT "ENTER ITEM DESERIPTION (20 GHAR: MAX:)"; I$(I)
340 REM*** DATA ENTRY TESTS GO HERE
350 INPUT "ENTER NAME OE SUPPEIER (20 CHAR: MAX.)"; S$(I)
360 REM *** DATA ENTRY TESTS GO HERE
370 INPUT "REORDER POINT";_E(I)
380 REM *** DATA ENTRY TESTS GO HERE
390 INPUT "REORDER QUANTITY"; Y(I)
400 REM *** DATA ENTRY TESTS_GO HERE
4 1 0 ~ I N P U T ~ " Q U A N T I T Y ~ N O W ~ I N ~ S T O C K " ; ~ Q ( I ) ~
4 2 0 ~ R E M ~ * * * ~ D A T A ~ E N T R Y ~ T E S T S ~ G O ~ H E R E ~
430 INPUT "!#HOLESALE COST"; E(I)
440 REM *** DATA ENTRY TESTS GO FERE
450 INPUT "UNIT SELLING PRICE"; U(王)
4EO REM *** DATA ENTRY TESTS GO RERE
470 REM *** DATA ENTRY CHEEKS DELETED TO SHOW PROGRAM STRUCTURE
4 8 0 ~ N E X T ~ I ~
4 8 5 ~ R E M
4 9 0 ~ F O R ~ I ~ \equiv ~ 1 ~ T O ~ N ~ N
495 PRINT D$;"WRITE PRODUCT,R";I
```

```
Handout #5
Page 3 of 9
File Handling and Project
```

```
500 PRINT P$(I)
510 PRINT I$(I)
520 PRINT S$(i)
525 PRINT L(I)
5 3 0 ~ P R I N T ~ Y ( I ) ~
5 4 0 ~ P R I N T ~ Q ( I ) ~
5 5 0 ~ P R I N T ~ C ( I ) ~
5 6 0 ~ P R I N T ~ U ( I )
570 NEXT I
6 3 0 ~ R E M
640 REM CLOSE FILE ROUTINE
650 PRINT D$:"CLOSE PRODUCT"
660 PRINT "FILE CLOSED."
670 END
```

*Adapted from Dātā File Programming in BASIC by LeRoy Finkel and Jerāld R. Brown, pages 257 and 261 ; copyright (c) 1981 by John Wiley and Sons, Inc., New York, New York: Reproduced with permission.

127

Handout \#5

Page 4 of 9
File Handing and Project
NAME
DATE
PERIOD

RANBOM ACCESS DATA FILES*
2. Writē two modules for this program; one to create and another to reād/cisplay a sequential file named Point, which has three data items per dātaset. The first dāta item is the product number from each dataset in PRODUCT, the second data item is the value for the quantity in stock, and the third data item is a value that corresponds to the record number in the PRODUCT file where that product nuirber is stored. The re should be exactly as many datasets in the sequential file POINT as there are records in the random access file PRODUCT. Your file creating module must input an èntire dataset from the random accēss file named PRODUCT, while only the first and sixth data items and the record number āre output to the sequential file named POINT. This file will be needed in problem \#3 for use by another team of students. A flowchart and good documertation are required.

Handout \#5
Page 5 of 9
File Handing and Projéct

Possible Solution to Problem 2 Using Applesort BASí

```
    10O REM PROB 2 SOLUTION
    110 REM CREATE A POINTER FILE NAMED 'POINT: FOR RANDOM AGGESS FILE
        ' PRODUCT'
    120 REM
    130 REM VARIABLES USED
    140 REM P$ = PROD. NO.
    150 REM I$ = ITEM DESCRI ION (20)
    160 REM S$ = NAME OF SUPF IER (20)
    170 REM L = REORDER POINT (1)
    180 REM Y = REORDER QUANTITI (4)
    190 REM Q = QUANTITY IN STOCK (4)
    200 REM C = WHOLESALE COST (4)
    210 REM U = UNIT SELLING PRICE (4)
    220 REM R = RECORD NUMBER
    230 REM N \equiv NUMBER OF RECORDS TO READ
    240 REM
250 REM FILES USED
260 RE% RANDOM ACCESS FILE NAME: PRODUCT
270 REM DATASET FORMAT: P$,I$,S$,L,Y,Q,C,U
280 REM SEQUENTIAL FILE NAME: POINT
290 REM DATASET FORMAAT: P$,Q,R
300 REM
3i0 REM INIIIALIZE ROLITINE
315 GLEAR
320 D$ = EHR$(4)
330 PRINT D$;"OPEN PRODUCT;L64"
340 PRINT D$;"OPEN POINT"
350 INPUT "HOW MANY RECORDS DO YOU WANT TO READ?";N
355 REM
360 REM READ 'PRODUCT' AND WRITE 'POINT'
370 EOR R = 1 TO N
380 PRINT 日$;"READ PRODUCT;R";R
390 INPUT P$ : INPUT I$
400 INPUT S$ : INPUT L
4 1 0 ~ I N P U T ~ Y ~ : ~ I N P U T ~ Q ~
4 2 0 ~ I N P U T ~ E ~ : ~ I N P U T ~ U ~
4 3 0 ~ P R I N T ~ D \$ ; " W R I T E ~ P O I N T " '
4 4 0 ~ P R I N T ~ P \$ ; Q ; R ~
4 5 0 ~ N E X T ~ R ~
4 5 5 ~ R E M
4 6 0 ~ R E M ~ C L O S E ~ F I L E S ~ R O U T I N E ~
470 PRINT D$;"CLOSE PRODUCT"
490 PRINT D$;"C!-OSE POINT"
4 9 5 ~ R E M
500 REM READ/BISFlAMy :POINT"
510 PRINT D$;"OPEN POINT"
```

Handout \#5
Page 6 of 9
File Handling and Project

```
520 PRINT D$;"READ POINT"
530 FOR R E 1 TON
540 INPUT P$ : INPUT Q : INPUT R
550 PRINT "PROD. NO. ";P$;" QUANTITY IN STOCK ";Q;" RECORD NO. ";R
560
565
5 7 0 \text { REM CLOSE FILE ROUTINE}
5 8 0 ~ P R I N T ~ D \$ ; " C L O S E ~ P O I N T " ~
590 PRINT: PRINT "ALL "; R; " DATASETS DISP!AYE' AND FILE ClOSED."
600 END
```

*Adapted from Bata File Programming in BASIC by LeRoy Finkel and Jerald R. Brown; pages 258 and 262; copyright (c) 1981 by John Wiley and Sons, Inc., New York; New York: Reproduced with permission.

130

NAME
DATE
RANDOM ACCESS DATA FILES*
3. Write a program to display the contents of selected records from the random access disk file named PRODUCT that was created in problem \#1 and used in problem \#c.

Write à second program that will allow the user to select a record to be displajed from the sequential file, POINT, created in problem \#2.

A flowchart and good documentation are required.

```
110 REM
120 REM VARIABLES USED
130 REM
140 REM I$ = ITEM DESCRIPTION(20)
150 REM S$ \equiv SUPPLIER(20)
160 REM L \equiv REORDES POINT
170 REM Y = REORDER QUANTITY
180 REM Q = QUANTITY
190 REM C = WHOLESALE COST
200 REM U_ = UNIT SELLING PRICE
210 REM
220 REM
230 RFM
240 REM
250 REM
```

```
    P$ = PROD._NO:_(4)
```

 P$ = PROD._NO:_(4)
 R$ = PRESS 'ENTER' TU CONTiNUE VARiABLE
 R$ = PRESS 'ENTER' TU CONTiNUE VARiABLE
 FILE USED
FILE USED
PRODUCT = (RANDOM ACCESS FILE)

```
    PRODUCT = (RANDOM ACCESS FILE)
```

Handout \#5
Page 8 of 9
File Handing and Project
Possitle Solutions to Problem 3 Using Applesoft BASIC

```
    100 REM
    PROB 3 SOLUTION USING THE RANDOM ACCESS FILE, PRODUCT
    110 REM
    120 REM
    130 REM
    140 REM
    150 REM
    160 REM
    170 REM
    180 REM
    190 RE
    200 REM
    200
210
220
230
240 REM
250 REM
260 REM
VARIABLES USED
    P$ \equiv PFOD. NC. (4)
    I$ = ITEM DESCRIPTION (20)
    S$ = NAME OF SUPPLIER (20)
    L \equiv REORDER POINT (4)
    Y = REORDER QUANTITY (4)
    Q = QUANTITY IN STOCK (4)
    C = WHOLESALE COST (4)
    U = UNIT SELLING PRICE (4)
    R = SELECIED RECORD
FILE USED
    PRODUCT - (RANDOM ACCESS FILE)
    INITIALIZE ROUTINE
CLEAR
270 D$ = CHR$ (4)
275 ONERR GDTO 400
280 PRINT "ENTER A NEGATIUE NUMBER"
285 PRINT "TO STOY THE PROGRAM."
290 PRINT D$;"OFEN PRODUCT,L64"
300 INPUT "WHICH RECORD?";R
310 IF R<0 GOTO 440
315 REM
320 REM REAB AND DISPLAY THE SELEITED DATASET FROM PRDIUCT
330 PRINT E$;"READ PRODUCT;R";R
340 INPUT PS : INPUT I$
350 INPUT S$ : INPUT L
360 INPUT Y : INPUT Q
3ZO INPUT C : INPUT U
380 PRINT D$ : PRINT
390 PRINT P$;1$;S$;L;Y;Q;C;U
395 GOTO_300
40O PRINT "THE FILE IS NOT THAT LONG."
4 1 0 ~ G O T O ~ 2 0 0 ~ 0
4 2 0 ~ R E M
4 3 0 ~ R E N G ~ C L O S E ~ F I L E ~ R O U T I N E ~
440 PRINT : PRINT "ALLL REQUESTED DATASETS FROM PRODUCT DISPLAYED
450 PRINT E$;"CLOSE PROUUST"
460 PRINT "FILE CEOSED."
470 END
```

```
Handout #5
Paje 9 of 9
File Handling and Project
```


*Adapted from Data File Programming in BASIC by LeRoy Finkē and Je idd R. Brown; pages 289 and 294; copyright (c) 1981 by John Wiley ānj scas, Inc., New York, New York, Reproduced with permission.

> まut \#6 Fije Handling and Project

CREATING AN INDEXED-SEQUENTIAL FILE

Sometimes a file (rāridom or sequential) becomes too large to sort in the computer's limited main memery. You; therefore; need to create à smaljer file, called an INDEX, which contains only the essential elements that you desire sorted, such as name or ID numbers; and the KEY or location of that record in the MASTER file. Once this indexEd file is sorted it can, for example, be read sequentialiy to print the MASTER file in alphabetic order. Simply retrieve the KEY portion of the indexed record; and you have the location of the master record in MASTER file.

In order to create this fidexed file, you must first place the essental element (s) that is/are to be sorted into an array. Why an array? Because you can use array expressions to do operations (such as sorts) on the entire group of numeric or character array data-items instead of on each data-item individually (scalar operations).

When an arraj ís sorted, character arrays are sorted or indexed according to the collating sequence in effect ori your comptiter; and numeric arrays are indexed or sorted rumerically.

You may use any type of sort to alphabetically àrange the array elements. The sample solution for this problem contāins à TRSDOS Mod ifi system sort command (CME " 0 ").

Once the array is sorted, each array element cān be stored in a sequentiai file which can be used to retrieve and update records from the MASTEP fiie.
*NOTE: The solution uses a variable length record for the random file, MASTER. Please be sure to enter the number of variable length files (2.) you are using when BASIC prompts you for "How Many Filēs?"

STUDENT WOP．KSHEET
Creating and Indexed－Sequential File
A．STATEMENT OF THE PROBLEM
Create a structured progrām that will print out an alphabetic listing of the random file，MASTER，through the use of an indexe guential fite called INDEX．

The NASTER record looks like this：

| S\＄ | N\＄ | C\＄ | | D\＄ |
| :---: | :---: | :---: | :---: | :---: |
| SEX | STUDENT＇S NAME | URSE NO | OTRER DATA | |
| M | MONIZ | 0006 | XXXXXXXXXXXXXXXXXXXXXXXXXX | |
| F | YUEN | 0001 | | |
| F | SMITH | 0009 | | |
| M | $A B E$ | 0006 | ХХХХХХХХХХХХХХХХХХХХХХХХХХ\％． | |
| F | KAMAKA | 0002 | XXXXXXXXXXXXXXXXXXXXXXXXXXXX | |
| FIELD | | FIELD | ENGTH | |
| SEX
 STUDENT＇S NAME（LAST） COURSE ino． OTHER DATA | | 1 character
 25 cha：acters
 4 characters
 50 characters． | | |
| The output should look like this： | | | | |
| ALPHABETIC MASTER FILE LISTing | | | | |
| Student name | | SEX | COURSE NO | OTHER DATA |
| ABE | | M | $0 ¢ 06$ | 枵 |
| KAMAKA | | F | 0002 | 匂义 $\bar{\chi}$ |
| | | M | 0006 | xixxxxx |
| 4 | SMITH | ¢ | 0009 | |
| 5 YUEN | | F | 0001 | XXXX |

Handout \#S
Page 3 of 6
File Handing and Project
The Indexed-Sequential file should look like this:

1. List the main objective(s) of this program.
2. What data àre contàned in each MASTER file record? What variābe names will you assign to these elements? What is the length of each field?
3. What fieldis) must be included in the array that wili create the IndexedSequentiā file? Which is the primary field that must be first in the ârrāy ēlement?
4. How will you create che elements of the above array?
5. What other item(s), if āry, must be incluced in each array elemerí?
6. Will the arrāy be ān Eiphabetic or numeric array? How large will you dimension this ārray?
7. What name will you assign to the Indexed-Sequential fije?

> A Possibie Solution to the Problem of Creating an Indexed-Sequential File for an Alphābetic Māster Student tist

010 REM VARIABLE NAMMES USED
OCO REM MASTER MASTER FILE
030 REM INDEX \equiv INDEXED-SEQUENTIAL FILE
040 REM N $\$ \quad \equiv$ NAME OF STUDENT (2E)
050 REM \quad S $\quad=\operatorname{SEX}$ (1)
060 REM C $\quad=$ COURSE (4)
070 REM D $\$=$ OTHER DATA (50)
080 REM N\% = NUMBER OF RECORD BEING READ (INTEGER)
090 REM NAM\$ = NAME FIELD INDEXED-SEQUENTIAL FILE
100 REM RECLO = RECORD LOCATION ON MASTER FILE
110 REM $\frac{\text { RL }}{120}=$ LENGTH OF MASTER FILE RECORD - 80 CHARACTERS
120 CLEAR 30000
130 DIM A\$(100)
$135 \mathrm{RL}=80$
$137 \quad \mathrm{~N} \%=0$
140 OPEN "R"-1"MASTER", RL
150 OPEN "0";2,"INDEX"
160 FIELD 1, 1 AS S $\$, 25$ AS N $\$, 4$ AS C $\$, 50$ AS D $\$$
IF EOF (1) THEN N\% = N\% - 1 ELSE GOSUB 2000:

GOTO 180


```
REM SORTING THE ARRAY A$(N%)
```



```
    CMD"0"; N"%; A$(1)
```



```
REM CREATING INDEX FROM SORTED ARRAY A$ (N%)
    FOR : = : TO N%
            PRINT #2,A$(I)
            PRINT A$(I)
    NEXT I
    ELOSE 2
```



```
REM PRINTING THE ALPHABETICAL LISTING OF MASTER FILE
```



```
    LPRINT CHR$(12): LPRINTT TAB(40) "ALPHABETIC MASTER FILE LISTING"
    LPRINT: LPRINT " NAME"; TAB(30)"SEx"; TAB(47)"COURSE"; "OTHER DATÄ"
    LPRINT:LPRINT
    OPEN "I";2;"INDEX"
    FOR I = i TO N%
                                    INPUT #2;NAM$,RECLO
                                    GET i; RECLO
                                    LPRINT N$,S$,C$,D$
    NEXT I
```

Handout \#6
Page 6 of 6
File Handing and Project


```
0510 REM END OF JOB ROUTINE
```



```
0540 CLOSE
0 5 5 0 ~ E N D
```



```
2010 REM CREATING ARRAY A$(N%) FROM NASTER FILE RECORDS
```



```
2040 N% = N% + j
2050 GET 1, N%
```



```
2070 - PRINT A$(N%)
2080 RETURN
```

Handout \#7
Page 1 of 4
File Handling and Project
NAME
DATE
PERIOB
TERM PROJECT

The following is à list of the items you will need for your term project to receive credit. The project is due on Extra points will be added for projects handed in early and points will be subtracted for late projects.

1. A cover of some sort with your name and project title on it.
2. A detailed written description of the problem of your program will "solve" and the procedure that you will use to solve it. Include any equations that must be used.
3. Operating instructions for running your program.
4. List of variables used in your program and their purpose. This list may be in alphabetical order or the order in which they are used in your prograiii.
5. A flowehart or algorithm:
6. A listing of the program and a sample runc if possible.
7. The grading sheet:

Other items that can be included in your project for additional credit are :

1. A hierarchy chart;
2. A logo for the program; using graphics;
3. A "menu" to make the program more user friendly.

CONVERTING FROM DECIMAL TO BASES OTHER THAN BINARY
SOLVING SYSTEME OF EQUATIONS
MULTIPLE CHOICE TEST IN ANY SUBUECT
SULVING TRIANGEES USING TRIGONOMETRY
GRAPHING LINEAR, QUADRATIC; POLAR EQUATIONS
PASCAL'S TRIANGEE
MAGIC SQUARES
PRIME NUMBERS
MUSTC
METRIC CONVERSIONS
PAL I NDROMES
SORTING METHODS
GAMES, SUCH AS:
TIC TAC TOE, DICE GAMES; JAN KEN PO; REVERSE; ACEY DUECY, BINGO, BURIED TREASURE
ADDRESS BOOK
DRAWING PROGRAM (ETCH A SKETCH)
HAWAII STATE DRIVER'S TEST
ANAGRAMS
SIMULATIONS (SLOT MACHINE)
CONIC SECTIONS
CHECKBOOK PROGRAM
GIVEN A YEAR, PRINE THE CALLENDAR FOR THAT YEAR
IUTORIAL PROGRAM (TEACHING RU'ES OF MULTIPLYING WITH SIGNED NUMBERS)
MAD LIBS
PROGRAMS FOR TEACHERS, DEPARTMENTS_OR CEUBS; SUCH AS:
TEST BANKS; SURVEY RESULTS; TEXT/EQYIPMENT INVENTORIES; SCHOOL PAPER; YEARBOOK

OR ANY IDEAS OF YOUR OWN (SUBJEET TO TEACHER APPROVAL!) USE OF TEXT FILES IS ENCOURAGED.

141

Handout 荆
Page 3 of 4
File Handling and Projēct

TERM PROJECT

FLOWCHART

142

Handout \#7
2age 4 of 4
File Handliag and Project
NANiE
DATE
PERIOD

TERM PROJECT
GRADING SHEET
Project Tītē \qquad
Possible Points

| Neatiess, appearance; organization | 40 |
| :---: | :---: |
| Description of problein and solution | 30 |
| Topic difficulty | 40 |
| Topic suitability, usefulness, and creativity | 30 |
| Flowchart or algorithm | 30 |
| List of variables | 30 |
| Program Does it work? | 100 |
| Does it check all possibilities of data? | |
| Is it user friend?y with à nice screen display? | |
| total | 300 |

Dāte turned in \qquad

Early/Late points
FINAL TOTAL \qquad
$\frac{1}{5}$ point for every school day it is early (Maximum of __ points) 5 points for every school day it is late

SAMPLE ACTIVITY CLUSTER \#6
 Dàta Structures

Topics:

1. Stacks
2. Queues and Linked Lists
3. Trees

Classroom Management:

The class à a group will be involved with most of the activities. Some ássignmérics māy require pairs of students.

Māterials:
Textbook, Data Structurē for Personā Computers b; Y. Langsam; M. J. Augenstein and A. M. Tenenbaum;
Videotape player and videotape, "Dätabase Processing Systems"
Overhead projector and prepared trānsparencies;
Handouts.
Time for Activities:
Approximately one and a half to three weeks may be needed, depending on the level of skills of the students. Time for the term project should alsc be provicied.

Teacher Preparation and Procedures:
Prepare needed transparencies and handouts. Preview videotape; if possible. All sample materials for these activities are located in the Sample Assignments and Materials for Activit.y Cluster \#6.

1. Using the overhead projector, introduce the major concepts of data structures. Distribute Handout \#1 = Outline lotes. Start with the easiest--the stack--an ordered collection of items into which new items may be inserted and from which items may be deleted at one end. Provide illustrations.
2. Assign some reading and/or exercises rēated to stacks for pairs of students to do. Handout \#2 Exercises for the Stack Bata Structure could be used. Whēn students hāve firished, discuss and compare results.
3. Continue the lecture on datä structures by discussing queues and linked lists. Distinguish the diffērēnce between stacks and queues. (Both are lists of things, but queues have one end for adding items and another end for removing items.) Linked lists have pointers indicating th: beginning, the end, and other areas in the list. Provide illustrations. Rēfèr to Hāndout \#l.
4. Assign some reading and/or exercises related to queues and inked lists for pairs of students to do. Handout \#3- Queue Froblems and Handout \#4 - Exercises for the Linked List Data Structure could be used. Have students discuss and compare resuits when finisned.
5. Finalize the lecture on datà structures by presenting tree structures; especially binary trees. Emphasize the difference in searching techniques between trees and lists. (Linked lists require a linear search; whereas binary trees allow binary search techniques.) Provide illustrations. Refer to Handout \#1.
6. Ássign some reading andor exercises related to binary trees for pairs of students to do. Handout \#5 - Exercises for the Binary Tree Data Structure can be used. Again; have students discusj and compare results when finished.
7. Show the videotape; "Database Processing Systems;" which contrasts file processing with database processing. Tree structures play a májor role in databases and are briefly discussed. Provide Handout. \#6 - Questions for the Videotape; "Batabase Processing Systems" for student discussion following the presentation.
8. Use discretion as to the appropriateness in assigning problems that incorpcrate data structures in BASIE programining. Time and student level of comprehension may limit sueh activities. The textbook suggested on the previous page will be most helpfu? here:

Sàmple Āssignments and Materiā̀s for Activity Cluster \#6:
The following pages in this activity cluster provide handouts that could be usēd in chis course.

NAME
DATE
PERIOD
OUTLINE NOTES

Data Structures

I. Stack - an ordered collection of items into which new items may bé inserted and from which items may be deleted at one end--the itop: it
A. Examples $=$

1. A stack of dishes in a cafeteria that suppies the top dish to the next customer; only the top dish can be removed.
2. A stack of magazines.
3. A stack of business records in a file.
B. LIFO Structures
4. Last In, First Out; last item put on stack, first to be removed.
5. Illustratration of four different views of the same stack: (See Illustration 1 which follows the outline.)
C. Prímítive operations-given a stack 'si and an item iji
6. Push - to place something on the top of the stack: push(s,i).
7. Pop - to remove something from a stack: pop(s).
8. Empty - to determine whether or not a stack is empty: empty(s).
9. Stacktop - $\overline{\mathrm{t}}$ - determine the top item on a stack without removing it: stacktop(s); this cannot be applied to an empty stack, as $\bar{i} \bar{t}$ is equivalent to pop(s) and push(s,i).
D. Problem: check 111 parentheses and brackets for matches to see if this string is valid $-(x+(y-[a ̈+b]) * c=[(d+e)]) /(h-$ (j-(k-[i-n]))):
10. Algorithm -

Set validity flag to true.
Set stack(s) to empty.
Do until flag is false or entire string has beani reãd
Read next symbol(i) in string
If symbol is (', ' ${ }^{\prime}$, ' ("openers") then push(sifi)
Elise
If symbol is 'j)', 'j', ' ' ("closērs") then
If emply(s) then set flag to false Else
$\overline{p o p}(\bar{s} ; i)$
If i is not the matching "opener" for symbol set flag to false
Fise
continue
Else
continue:
If not empty(s) then set flag to false.
If flag is valid then write "The string is valid." Else
write "The string is invalid.".
2. Refer to illustration 2.
3. Prectice problems; refer to Handout \#2.
II. Queues anc Einked Lists
A. Queue - an ordered collection ō ítems from which items may be delesed at one end (the front) and into which items may be inserted at tile other end (the rear).

1. Example of queues of people standing in ine waiting for something; consider "sociology" of these kinds of queues.
2. Example of recorus in illustration 3.
3. FIFO structures - first in, firsf out - às opposed to stack=.
4. Primitive Operations - given à queue 'q' ànd an item 'x':
5. Insert - to add something at the rear of the queue: insert (q, \bar{x});
b. Remove - to delete something from the front of the queue this cannot de applied to an empty queue: $x=\operatorname{remove}(\bar{q})$;
c. Empty - to determine whether or not the queue is empty: empty(q);
d. Rēfer co Illustration 3 again.
6. Underflow - result of an illal attempt to remove an item from an empty queue.
7. Overflow - result of having more items or elements in an array, used as a queue, than were allocated for the array.
8. Specifications =
a. Consider an array that holds a queue as a circle; not a straight line;
```
Handout #1
Page 3 of 16
Bata Structures
```

b. The value of the variable for the front element (FRONT) should be the index of the array element immediately preceding the first slement of the queve;
c. The value of the variable for the last element (REAR) should be the index of the last element of the queue;
d. A queue can grow only as large as one less than the size of the ârray.
8. Illustrations of the specifications -
a. If an array of 5 positions is considered a queue, the queue may hàve up to 4 members or elements.
b. Examplēs cf à füll queue:

> FRONT $\equiv \frac{1}{1}$ and $\operatorname{REAR} \equiv \overline{5}$ or
> FRONT $\equiv 2$ and $\operatorname{REAR}=3$
c. Refer to Illustrations 4 and 5 .
9. Case Study Problem; rēfēr to Hāndout \#3.
B. Linked List $=$ an ordered list consisting of elements called nodes, pach having à datà portion and á pointer portion that points to or gives the addrēss of the next node. A "head" pointer points to the first element of the list, whereas a "nil" is the last pointer in the list. Refer to Illustration 6.

1. A dynamic data structure, not having a ixed amount of storage, as allocated to stacks or queues.
2. Can have an element easily inserted in or deleted from the middle whereas arrays in stacks or queues require vast movement of elements to accomnodate the insertion or deletion. Refer to Illustration 7.
3. Operations-give ' p ' as a pointer, ' x ' às an item and node (p) as the nude pointed to by p :
a. Insafter (p, x) - to insert an item into a list after a node pointed to by p;
b. Delafter (p, x) - to delete an item from a list following node (p);
c. Push and pop are still valid operations.
4. Practice Probiems; refer to Handout \#4.

1If. Trees - à type of multiply-inked list, the nodes of which have more than one pointer field; a Binar. Tree has no more thän two bränches (pointers) from each node.
A. Root - topmost element or node of the cree; organization is from top down.
B. Eranch - a pointer field of a node in a tree.
C. teaf - any node with both pointer fields equà to Nil.
D. Parent nodes point to children nodes below; every node is really the root of its own subtree. Refer to Illustration 8.
E. Terms or descriptions to define and identify on Illustration 8:

1. Strictly binary tree - every nonleaf node in a binary tree has non-empty right and left subtrees;
2. Complete binary tree of level 'n' - each node at level n is a leaf and each node at lesser levels has nonempty right and left subtrees;
3. Almost complete bina:y tree - leaves are found only in the ast two levels of a binary tree;
4. Level - the root of a tree is at level θ; and the level of ary other node is 1 more than the level of its parent;
5. Dépth = the māximum lēvel of any leaf in the tree.
F. Operations on Binäry Trees = given ' p ' as a pointer to a node 'nd':
6. Info $(p)=$ to rètürn contēnts of nd;
7. Léft $(p)=$ to return pointer to left child of nd;
8. Kiglit $(p)=$ to return pointer to right child of nd;
9. Parent (p) - to return pointèr to parent of nd;
10. Sibling (p) - to return pointē to sibling of nd;
11. Maketree (x) - to create a new binary tree with one node having field x;
12. Setleft (\bar{p}, x) - to accept pointer p to a binary tree node nd with no left child and create a left child of nd with data field x;
13. Setright(p, x) - io do the same thing ás äbove but with à right child.
```
Handout #1
Page 5 of 1%
Dita Structures
```

G: Traverse a binary tree = to pass through the tree; enumerating each of its nodes once:

1. Preorder - start at the root, travel along the left subtree, ijsting each node as it is encountered from he left side, (pre- crder , continue on to the right subtree, again listing each node às it is encountered from the left side until the last node is reached;
2. Inorder - start with the last left descendent on the left subtree, travel along the left subtree, listing each node as it is encountered from the bottom, \rightarrow continue $\ddagger 0$ the root and on to the right subtree (in- order in a similar manner;
3. Postorder - start with the bottom node on the left subtree, travel upward along the right side, listing each node as it is encountered from the right side; (\quad post- ; continue on to the right subtree, again listing (\quad order $)$ each node from the right side until the last node is reached at the root;
4. See Illustration 9.
H. Example of an algorithm using the operation Intra(tree) to traverse a Sinary tree in inorder procedure and to print the contents of each of its nodes.*
```
Read number
tree = maketree(number)
while there are numbers left in the input do
    read number
        q = tree
        while q < > null do
            p=q
            if number < info(p)
                then q = left(p)
                else q = right(p)
            endif
    endwhile
        if number < info(p)
            then setleft(p; number)
            else setright(p,number)
        endif
endwhile
'traverse tne tree
intrav(tree):
```

I. Praetice Problems; refer to Haridout \#5.
*From Dáa Structures for Personal Computers by Langsam, Augoñstejn and lēnēnbaum, page 294; copyright (c) 1985 by Prēnticē-Hall, Inc., Englewood Cliofs; New jersey: Reproduced with permission.

Handout \#1
Page 6 of 16
Data Structurēs
IELUSTRATION 1
THE STAGK*

Four different views of the same stack.
*FFrom Dāta Structures for Parsonal Computers by Langsam. Augenstejn and Tenenbaum, page 110; copyright (c) 1985 by Prentice-Hall; Inc., Englewood Cliffs; New dersey: Reproduced with permission.

The parenthesis stick. at various stages of procéssing.
*Fr: De*e Stuctures for Personal Computers by Längsām, Augenstejn and Tenenba: Cliffs: 5; copyright (c) 1985 by Preñitice-Hāll, Inc., Eriglewood Reproduced with permission.
Handout \#1
Page 8 of 16
Data Structures

ILLUSTRATION 3
 THE QUEUE*

(b)

(c)
insert(q,A);
insert(q,A);
insert (q;B);
insert (q;B);
insert (q,c); Figure (a)
insert (q,c); Figure (a)
x=remove (q); Figure (b)
x=remove (q); Figure (b)
insext(\overline{q},D);
insext(\overline{q},D);
inseret (q;E)
inseret (q;E)
Figure (c)
Figure (c)

Queues are essential to time=shāred computer systems. They are used to keep track of each user's inpuit. The computer executes commands at one end of the queue while adding new commands to the other end as they come in.
*From Data Structures for Pèrsonā Computers by Langsam; Augenstén and nenbaum, page 155; copyright (c) 1985 by Prentice-Hall. Inc. Engiawood jiffs; New Jersey. Reproduced with permission.

ILLIJSTRATION 4

 THE QUEUE*

Figurefa): there are three elements in the queue - C, D and E in QITEM(3), $\operatorname{QITEM}(4)$ and $\operatorname{QITEM}(5)$, respectively. Here REAR $=5$ and FRONT $=2$.

Figure(b): element \bar{F} is inserted at the $\bar{r} z_{i}$; thus moving REAR to position 1 ; according to given specifications of a queue; this one is full.
Figure (c): element G is inserted but cannct be accepted, since an ovor iow results when FRONT = REAR.

Figure(d): no elements mean an empty queue aiu Fill$=R E A R=0$
*From Data Structures for Personal Computers by Langsam; Augens avin and Tenenbaum, page 161; copyrig (c) 1985 by Prentice-Hall; Inc., Engleivoou Cliffs; Neiv Jersēy. Reproduced with permission.

Handout \#1
Dage 10 of 16 jata Structures
ILLUSTRATION 5
THE QUEUE

A queué s simulāted by à craculàr ārrāy

According to given specifications of a queue, this one is full.
156
155

Hāndout :
Päge $11 \quad 16$
Dātã Structures
ILLUSTRATION 6 THE LINKED LIST*

4. inear linked list.

Eacii element in a linked list is known as a NODE and contains the DATA field with the information to be stored and the POINTER field with the address that points to the next ēlement in the list.
*From Data Structures for Personal Computers by Langsam, Augenstein and Teneníaum, page 165; Copyright (c) 1985 by Prentice-Hail, Inc., Englewood Cliffs, New Jersey. Reproduced with permission.
1.56

Handout \#1
Page 12 of 16
Data Structüres
ILLUSTRATION i
THE LINKED LIST*

Figure (a): Inserting an element x between the third wind fourth elements in an array or queue means moving items 4 through 7 each one slot first before the insertion. If the array had 1000 elements, a vast amount of changes would have to be made.

Figure (b): Inserting an element x between the third and fourth elements in a linked list means inserting the e ēement and adjusting onily two pointers. The amount of work required is independent of tre size of the list.

末From Data Structurē for Pērsonā Computērs by Lāngsam, Augenstein and Tenenbaum, pages 175-176; copyright (c) 1985 by Prentice-Hall; Ine:; Englewood Ciffs, New Jersey. Reproduced with permission.

Page 13 of 16
Data Structures

> ILLUSTRATION 8 THE BINARY TREE

(a)

A Strictly Binary Tree

(b)

A Strictly Binary Tree

(c)

A Strictly Binary Tree and A Complete Binary Tree of level 2


```
Handout #1
Page 14 of 16
Datä Structürēs
```


*From Data Structures for Personal Computers by Langsam, Augenstein and Tenenbaum; page 288; copyright (c) 1985 by Prenticē-Hall, Ine., Englewood Cliffs, New Jersey. Reproduced with permission.
inary Trees and Their Traversals:
To Eraverse a nonempty binary trea in preorder:

1. Visit the root.
2. Traverse the left subiree in preorder.
3. Traverse the right subtree in preorder.

To traverse a nonempty binary tree in inorder or symmetric order:

1. Traverse the left subtree in inorder.

2. Traverse the right subtree in inorder.

To traverse à nonempty binary tree in postorder:

1. Traverse the lef \bar{t} subtree in postorder.
2. Travere the right subtree in fostorder.
3. Visit the root.

Preorder: ABDGCEHIF
Inorder: DGBAHEICF
Postorder: GDBHIEFCA

$$
1650
$$

```
Handout #1
Page 16 of 16
Data Structures
```


Preorder: CEIFJDGHKL
Irorder: EICFJBGDKHLA Postoider: IEJFCGKLHDBA

From Data i: uctures for Personal Computers by Langsam, Augenstein and Tenenbaum, page; 2; copyright (c) 1985 by Prentice-Hall, Inc., Englewood tliffs; New Jersey. Reproduced with permission.

Handout \#2

Data Structures

NAME
 DATE
 PERIOD

EXEREISES FOR THE STACK bata structurex

1. Use the operâtions pust, pop; stacktop; and empty to construct operations which do each of the following:
(\bar{a}) Set i to the second element from tile top of the stack; leaviig the stack without its top twe elements.
(b) Set j to the second element from the top of the stack; leaving the stäci unchānged.
(c) Given an integer n, set i to the n el ement from the top of the stack, leaving the stack without its top n elements.
(d) Gisen an integer ne set ito the nth element from the top of the stack, leav: ctack unchanged.
(e) Sēi ito \quad ? \quad ment of the stack, leaving the stack empty.
(f) Set : to ? i. ment of the stack, leaving the stack empty. Unchāngec,
(g) Set i tr $t \%$ erent trom the sottom of the stack.
2. Simulate the \quad the árithm in this section for each of the following string sin sowing contents of the stack at each point.
(a) $(a+b\})$
(b) $\{[a+b]=[(c-d)]$
(c) $(a+b)=\{c+d\}=[\bar{f}+g]$
(d) $(i h) \star\{([j+k])\})$
(e) $(((a))))$
3. Like the operation Pop, Stacktop is not defined for an empty stack. The result of ari illegāl àttempt to pop or áccess an item from an empty stack is ralled Underflow. Underflow can be avoided by ensuring that Emp $+\mathrm{y}(\bar{s})$ is false before attempting the operation Pop(s) or stacktop(s).

What set of conditions are necessary anc sufficient for a sequence of push and pop operations on a single stack (initially smpty) to leave the stack empty and not to cause underfiow? What set ef cenditions are necessary for such à sequance to leave a non-empty stack unchanged?
*From Data Structurés for Personal Computens bv Langsam, Augenstein and Tenenbaum, page 117-118; copyright (c) 1985 by Prentice-Aall; Inc:, Englewood Cliffs; New Jersey. Reproduced with permission.

NAME
DATE
PERIUU

QUEUE PROBLEMS
 CASE STUDY*

Case Study: Simulation of à queve
Let's now look at an example of using a queue as a circulā ārray.
For this case study, the problem ís to simulate a single service station queue. We want to construct an algorithm which can be used to study what happens in the simplified situation where we have one clerk serving people who line up as they arrive and wait for service. This is the case in a small shop with only one cierk; or in a small post office $\bar{j}_{\text {, }}$ etc. In such a problem we would want to be able to watch the queue grow and shrink; we would we to kilow how mich of the time the clerk was idle, and we would want to have some idea of the average fime each customer stayed in tiee store $=$ - time spent waiting in the queue plus time getting served. We will want to be āble to vãry the average time bétween arrivals and the àverāge service time and watch the effect these parameters have on the queue.

This is à simplified version of what might be done in an advanced course in simulation, and there is a great deal more that could be done; since our real goal is to demonstrate the use of queues, well not go into the problem any furthèr thān this.

Problein Definition:
Write an algorithim which will simulate a queueing situation with one queue and one server. The average tine between arrivals and the average service time should be determined by the user. The algorithm should show the user how the queue chānges during a work period às well as provide some statistics on the total idle time of the server, the average queue length, the maximum queue length and the average time each customer is in the store.

Solution:
The solution to the problem liés in the use of a queue to hold the customers as they weit to be served. We will need to have a random number generator in order to simulate the arrival and service times.

A description of the solution:
Each time a customer arrives, place him or her on the queue. Whenever the clerk finishes serving a customer, perform the necessary calculations for that customer, and, if another customer is waiting in line, take that custoner off ine queue and serve him or her. If there are no customers in line, adjust the idle time of the clerk apprepriately.

An algoritnm:

An algorithm for the solution could be writteri in severā ways. One way is to use a big loop which loops each time something happens, either a customer arrives or leaves. An alternative is a loop which lonps once for each of some fixed time interval.

We:ll use driving loop which loops once each minute of the working dāy, followed b, another loop which will take care of any customers jeft in te queue when the store closes. We assume that the number of minutes in the working day is known - á coristant - and assume that the usē will eriter the average time between arrivals and the average service time.

Leaving aside the details of initializing the queue and obtaining the data from the user, after some work jou night arrive at an upper level algorithm srmething like:

```
loop once for each minute of the day:
    if a customer arrives
            then put the customer on the queue
        if the service station is not empty
            then subtract i from the service time left
    if the service stacion is empty
            then
                if the queut is not empty
                        then process start-service
            else add 1 to idle-time
loop while there are customers lef\overline{t}
    subtract l from the service time left
    if the service station is empty
            then process start.-service
callculatee and display the results
```

This is fairly cleãrexcept that just what gets done when à customer arrives or lēā̃es is not spelled out. it is also not çlear what to put on the queue when a customer arrives. After thinking about it you would jikely conclude that the only thing reeding to be put on the queue is the time of arrival. And, the average time the customer is in the queue is essentially the same as the average time the customer is in the store except that the fatter time should be longer by the average service time. In other words; whether we capture statistics on the average time in the queue or the average time in the store doesn't really matter.

A lower level algorithm - solving some of these details - might look like:
START
initialize
print "Enter the average time between arrivals - "
enter average-arrival-time

```
Handout #3
Page 3 of 5
Bata Structures
```

print "Ent n the āverage sérvico time - :
enter average=servicē=time
loop for time set to 0 thru number-of-minutes-in-work-day
if arrival
then
insert(tıme)
if queue-length $>$ max-length
then set max-length to queue-lengt
if $\dot{\mathrm{f}} \mathrm{r}$: ice-time-left $=0$ then subtract 1 from serisce-time-lef
if sorvice-time-left $=0$ then
if not emptyqueue then
set arrival-time to delete
set number-served to number-served ∓ 1 set total-waiting-time to total-waiting-time + (time $=$ arrival-time ${ }^{\prime}$
set service-time-left to service-time else add 1 to idle-time
add cleue-length to total-lencth if \bar{t} me mod $15=0$ then display-queu (end of for loop)
set time to number-of-minutes-in-work-day
loop while not emptyqueue
add 1 to time
subtract 1 tom service-time-left
if servic time-left $=0$
then
set arrival-time to dequeue or delete
set number-served to number-served +1
set total-waiting-time to total-waiting-time + (time - arrival-time)
set service-time-left to service-time
add queue-length to total-length
if time mod $15 \equiv 0$ then display-queue
(end of while loop)
set average-kiting to total-waiting-time/number-served
set rerage-queue-length to total-length/number-of-minutes-in-day
pin: "r, average time between arrivals was ", average-arrival-time
pil: "he average service time was ": average-service-time
re "rie total number served was "; i mber-served
ir"at "The average time spent waiting was ", average-wóting
-rint "The total idle time for the clerk was"; idle-time
pritit "The maximum queue length was ", max-length
zr: int "The average queue length was "; average-length
ENII OF THE ALGORiTHM

```
Handout #3
Fage 4 of 5
Bata Structures
```

Illustration of Queue:
Draw an illustration of the queue in the above algorithm. Show an example àt the beginning of the dav, in the middle and at the end of the day. Using the recommended textbook, convert the above ālgorithm into BASIC code.

[^8]Handout \#3
Page 5 of 5
Data Structures
Fivatit

EXERCISES FOR THE QUEUE
bATA STRUCTURE*

1. Whāt set of conditions is necessary and sufficient for a sequence of insert and remove operations on a single empty queue to leave the queue empty without causing an underflow? What set of conditions is necessāry ānd sufficient for such a sequencè to leave à nonempty queue unchānged?
2. If ān ārrā is not considered circuiar, it is suggested that each remove operàion wist shict down every remain: lement of a queue. An alternatue methot s ostpone shifting until REAR equals the last inder of the siaj. When that site tion occurs and an attempt is made to insere alement into the queue, the entire queue is shifted dow, so that the first element of the queue is in the first position of ine arra What are the advantages of this method over performing a stific - ench remove operation? What are the disadvantages? Rewrite the routinas re"ove, insert and empty using this method-
3. Shom jw a sequence of insertions and removals from a queue represented ty a inear array can cause an overflow to occur upon an attempt to insest an element intc an empty queue.
*From Data Stru cures for Personal Computers by Langsam, Augenstein and Tenenbaum; page 16:; copyright (c) 1985 by Prentice=Hall, Inc. Englewoud Cliffs; New Jersey. Reproduce vitn nermission.
```
Handout \#4 Bata Structures
```

NAME
DATE
PERI $\overline{O D}$

EXERCISES FOR_THE LINKED LIST DATA STRUCTURE*

1. Write an algorithm for inserting a new element to a linked líst at the beginning of it. Iljustrate this processing using blocks and ariows. Bon't forget the Head Pointèr; be sure to label all nodes.
2. Write an álorithm for ins irting a new element at the end $\overline{\mathrm{j}}$: linked list. Illustrate this processing ūing a method simila
3. Write an algoritr 'ie following:
a: Concatenàte t. s;
b. Reverse a list, su that the last èlement becomes the first, and so or:
c. Delete the last element from a iost;
d. Delete the nth elenent from a list;
e: Insert an element after nth element of à lis
f. Delete every second element from ä list.
4. Write a BASIC routine to perform one of the ābove aigerithms.
*From Lata Structures for Personal Computers by Langsam; Augenstein a-d Tenenbaum, pages 187-18 copyright (c) 1985 by Prenticē=Hāll, Inc.; Englewood Eliffs; New dersey. Reproduced with permissioni.

> Hāndout \#5

Dātā Structures
NAME
DATE PERIOD

EXERCISES FOR THE BINARY TIEE

 DATA STRUCTURE*1. Prove that a node of Einary tree has at most one parent.
2. What are the maximum number of nodes at level ' n ' in a bināry tree?
3. Write an algorithm to determine if a binary tree is:
a) strictly binary;
b) complete;
c) almost complete.
4. Two binary trees are smilar if they are both empty or both noiempty, their left subtrees are similar and then right suotrees are simitr. Write an algorithm that determines if two binary trees are simian.

天From Data Structures for Personal Computèrs by Langsam, Augenstein and Tenenbaum; pages 296-297; copyright (c) 1985 by Prentice-Hall, Inc:, Englewood Cliffs, New jorsey. Reproduced with permisision.

```
Handout #6
Data Structures
```

NAME

DATE
PERIOD
QUESTIONS FOR THE VIDEOTAPE,
"Database Processing Systems"

1. What is meant by Integrated Data Systems?
2. What are three disadvantages of a file processing system?
3. What role does the DBMS (Database Me agement System) piay?
4. Consider five advantages and disadvantages of database processing.
5. What data structures are utilized for database dātā?
6. How is a subschema different from a schemă in viewing database data? Give an example of each.
7. What is meant by overhead uata? How does overhead data affect the system hardware and software?
8. How is the integrity of the dabase maintained?
9. What are the responsibilities of the Database Administrator?
10. What qualifications should a Database Administrator have?

SAMPLE ACTIVITY CLUUSTER \#7
Computer Ethics and Impact on Snoiety

Topics:

1. Computer Careers
2. Computer Applications in Var ius fields
3. Computer Misuses and Crime
4. Unemployment and Depersonalizátion
5. Privacy

C] issiro: Mānāgement:

Post of the activities will involve the whole class. Reading assignments wis be done by the individual students.

Mätērialos:

Resources for rererence or text, such as:
An Introduction t Computers by Donād D. Sjencer, Chapters $\overline{7}$ and 16;
Computē Literacy--Problem-Solving with Computers by C.E. Horn and J. L. Poirot, pages 98-107;
Computē Literacy - Programming, Probiem Solving, Projects on the Apple by Warren and Bobbie Jones, Kevin Bowyer and Mel Ray; Chàpter ó;
Computērs Todāy by Donald H. Sanders, Chāpter 19;
Scholāstic Computing-An Introduction to Computers by Jack L. Roberts, Unit 5;

Spotlight on Computer Literacy by Ellen Richman; Chapter 12; TTo Copy or Not to Copy: A Moral Dilemmai by Tim Barry from InfoWord, (September 29; 1980), pages 5-6;
"Washington Tackles the Software Problem" by Christopher Kern from BYTE, (May 1981), pages 128-138;
"Copying Software-Crime ir the Elassroom?" by Lauren Letellị from Electronic earning; (January/Febriary 1982), pages 42-51;
"Teaching Computei Ethics" wy William J. Kreifen from Electronic Learning, (January 1984); pages 54-57:
Current articles from newspapers or magazines re?ated to computers in society;
Handouts.
Time frir Activities:
Approximately one to two weeks
Teacher Preparation and Procedures:
Sélér appropriate reading materiàl, such as from the above resources. prepare needed handouts.

1. Ask stutents to be "on the lookout" for newspaper articles relatine to the imnect of computers or society and jobs and bring these in for sharing and posting.
2. Invíte abs guest speakers two or three professionàs in the field of computing (programmer, systems añāysit, dātābāse administratior, etc.) to discuss job responsibilities; problems and reward:s.
3. Have students contact employment agencies coilfges and universities for data on particular computer-relazed jobs. Ask them to investigate job descriptions, the average lary and the courses or degrees required. Suggest they make use of the Computer Careers Handbook, an ARCO Publication, by Connie Winkler, found in the vocational department in most large libraries. Also, the Readers' Guide to Periodical Literature ānd Cáreer Kokua may prove to be helpful.

Ilow time for students to share their research findings orally ard to ássemble their data on a bulletin board, along with advertisements, articies, want ads or other related resources.
4. Computer eqthes is a topic that can be incorporated at any time in the semester, nō just toward the end of the course, $\bar{a} s$ suggested here. An appropriate time would be when an issue arises in class over copying commercia! software or when the tampering of à student's private disk has occurred. A class discussion of the specific issue or the general topic should be conducted. Student responsibilify for upholding nigh ethical standards in and out of the classroom cannot be cteremphasized. After reviewing in class issues of particular news articles related to cimputers in society, encourage students to discuss the articles with their parents. Following these family discussions; have students share their reactions to and opinions about the articles. Input from parents, teacher and class can provide a broader perspective on major issues.
5. The topic of computer ethics can be further expanded with an article or two on computer crime. Have students read copies of the article(s) and discuss the basic issues; such as:
a. Reasons why it is difficult to prevent computer crime;
b. Ways in which computer crime affects the economy;
c. Possible solutions for or preventative measures against computer crime;
d. Pros and cons of the current copyright laws on software; e. Suggestions for a fair and just resolution of the dilemma:
6. Assign some reading material from a text $c i$ eference with further discussion questions.
7. Invite a guest speakē from the data processing or computer department in à large firm to come and address the issues of data privacy and security and computerized databases.
8. As an alternative āpproach to covering the topics; have teams of students research one particular topic; such as computer fraud or computer victims. Hāve students use a word processor to type up their reports. Then allow time for class presentations and discussions of the topics. A list of interesting topics related to computers in our society is provided in Handout \#1 = The Impact of Computers on Our Society. A format for organizing research information and personal reactions can be found in Handout \#2 = Summary Format.

NAME
\qquad
THE IMPACT OF COMPUTERS ON OUR SOCIETY
Look over the following topics and subtopics related to computers and choose ONE of the subtopics that your team will develop for presentation to the class.
I. ROBOTICS AND AUTOMATION
A. Artificial Intclligence--what is it? Can it be created?
B. Robotics in the work force--how have robots affected manufac= turing? Lis problems and advantages to us.
c. What kinds of jobs will computers replace? What are the problems and advantages to the people they replace?
II. DATA BANKS
A. What are datā bānks? Whāt àre they used for? How are they created? How is the information in them retrieved?
B. What are our rights to privacy? How can we protect ourselves from wrong information in our files? Who has access to information on us? Where are these data banks located?
C. What are some of the ābuses that have occurred with data banks? What are some of the advantages of data bânks?
III. COMPUTERS IN FINANCIAL INSTITUTIONS
A. How do bariks use computers? Why do they need them?
B. What is Electronic Funds Transifer and how does it work? at are the advantages of its use? Disadvantāges?
C. What are some of the dangers that occur with the use of computers in banks? How can these dangers be minimized?

JV. CRIME AND LAW ENFORCEMENT
A. What is a hacker? Who are hackers? What àre some of the things that hackers have done? How are they found?
B. What kinds of crimes can be committed by computers? How can they be prevanted? How can they be cietected?
E. What arg some of the ways in which computers āre used in la. enforcement?
V. GOMPUTERS IN ENTERTAINMENT
A. Video games--do they have any usefū purpose besides entertainment? Are tَney dangerous or harmful? What are some of trie latest developments in this field?
B. How do movies use computers to create special effects?

```
Handout #1
Page 2 of_2
Computer Ethice and Impaet
```

VI. . .
A. What is Collputer Ansisted instruction (CAI)? How can the schools se CAl to improve learning and teaching?
E. How will computers change the way education is taught? Will we seed schools at all?
VI. COMPUTERS IN BUSINESSS
A. How are computers used in sajes? What do point-of-sales terminals do in a store? How do they help management?
B. What is word processing? How can it be used in today's office? What are the advantages? Disadvantages? Will it eliminate many clerical/secretarial jobs?
c. How are computers used in accounting? What is accounting? How can computers help with budgeting?
VIII. COMPUTERS AND SEGURITY
A. How are computers used as home security systems? How do they work? How much do they cost? Where can they be found? Are they really effective?
B. Government spying (espionage)--why do other governments want to steal our technology? How are they doing it?
C. How are computers used by the military? Are strategic simulacions really accurate? How are computers used in sātēlite communications? Armaments? Star Wars?
XI. TUTE COMPUTER AS AN AID TO MAN
A. Computers in medicine--what are the different ways in which computers help patients and doctors? Will they ever replace doctors.
B. Electronic mail and bullentin boards--what are they? How do they work? Who will use them? Are they any good? What impact will they have on our postal service?
C. Computer-Aided Design (CAD)--how do architects and engineers use computers in their work?

Author's Name:
Title of Article:
Name of Magazine/Book:
Date/Copyright Yeür:
Volume and/or Page number:
INTRODUCTION: (Main Ideas.)
\qquad
1)
\qquad
2) \qquad
\qquad
3)

4)
5)

COINCLUSION: Rēer to the suggestions on the next page.

176

I feel that.-......Eecause.......
I think that.......because........
The main advantage ōf........ís......
The main disadvantage ōf...ois $\overline{\mathrm{s}} . . .$.
We should.:.
I believe that:o......
Computers are:c.o.:.
From the article, I.o....:
In my opinion:-....:
I hopeco.o.o.
I agree with the article because........
I disagree with the article because.a......
Probably in the future:.-.:.a.
Wouldn't it be terrifie f:-:-:-:
We shouldn't........because.-ro.-:
Our society will.e.o.e.
Computers hãve tremendous impact on our society because.......
Coniputèrs will not have any impact on our society because........

APPENDIX

178

60．1．5：
1．The student will demonstrate competence in using comptoters．
\＆The student wi use the computer as a tool for probiem soiving and deciston making．

The student will recognize the impact of computers in dai？y 1ife．

4．The student will investigate educational ard caneer opportunities in computer－reicited professions．

GOAL 1.
1．The student will demonstrate compotence in using pucer，
ま．ま。 fnteracts preparkeged computer proginis．
 （manuāis；programs peripherais，etc．）for performing a task．

1．1．2：The studer adapts programs to solve specific robiemis．
i．1．3：The stucent evaluates and compares computer programs （prepackuged；and stalent＇s omi）．

1．2．Processes information according to a set of predefined computer rules：organized，coded，given reaning and transmitted．

1．2．1．The student demonstrass through a project the processing of information．

1．2．2．Tre student implements routines to process information through searching，sorting；deleting，upd，ting， st arizing，storing，étc．

1．2．3．e student explains the major parts and furctions of a computer syscem（e．g．，CPU－registers；accumulators； memory－addressing：eripherals－cyilinders，tracks， sectors）．

1．3．Develops good programming styye in à higher level language such as Pascal．Good programing style includes logica？ structure，documentation（readability），efficiency，elegance．

1．3．1．The student demonstrates the ájily to cieariy define problems and to subdivide à particular problem into logical subproblems：
1.5.\%. The studests designs structured solutions to probiems = algorithms - \bar{y} y applying the principies of top-down design methodolog.
1.3.3: The t tue proferly implements the avajabte cont of stricuur: - sequence interation and Eranching = whe: ading algorithms intû à specific high-level language.
1.3.4. The stident designs and uses numeric and string arrays an metrices.
1.3.5. The studeit demonstrates the $\bar{a} \bar{b} \overline{1} \bar{t} y$ to anticipate, identify, isolate and correct errors.
1.3.6. The student enhances the readadity and ciarity of his or her progran $b y$ including appropriace documentation.

GOAL 2.
2. The student will use the computer as a tooi ir proten solving and diciston making.
2.?. Selects anc uses appre late der structures to sṑè problems.
2.1.1. The studerit describes the major types of dats structures āvailable to the high-level languag beinc siudiea and indeerstānds their uses and limitatione
2.1.2. The stưent recognizes and intely utifizes e!onentayy dātà structures in solv. ams.
2.2. Creates and implements algorithas on solve problems.
2.2.1. The student recognizes and áppropi" aly atilizes elementary algorithms in solving protlems.
2.2.2. The student designs and implements his or her own algorithms in solving sone types of programming probleins:
2.3. Uses 3 computation/ infrmation system (computer or computer system) to solve challenging problens and make decisions.
2.s.1. The studerit creates and utilizés seo ntial datá files for file-processing programs.
2.3.2. The studenti creates and utilizes random datá filrs for file-processirn programs.
2.3.3. The sturients easily ases mathematical and string maniputarion functions sperific to the high-level language being studied.
2.3.4. The student designs à variēty of gräphics progrāms.
2.3.5. The stud \cdots experiences wor*ing as a tear $;$ a prograning environ t mith simulates the actual ield where each team is responibibe for developing one mocule in a large: progriming sy̌stam.
2.4. Uses the computer for infomation storage and retric ai, simiation and modeling yuality or niocess control and decision making, computation, data prucessing.
2.4.1. The student recognizes and uses computer application tools:
2.4.2. The s̄udent values efficient incormãtion procesing.

GOAL ${ }^{2}$.
3. ris ưdent will reognize the impact of computers in daily life.
3.i. acognizes éthical and sociai inploations o compter ase.
3.1.1. The student identifies computer anpications in business, industiy, scientific research, medicine, government, education, health and social services, recreation, creative arts, atc.
3.1.2. The student apociates the economic benefits of computerizetion for society.
S.1.3. The student understands tuci corimer can be used to effect distribution and us of ecor ar and political power, and used in criminal a, ther anti-social activities thàt affect society ir unsirable ways.
3. \bar{c}. Demonstrates responsiole use of computer systems.
3.2.1. The stadent acepts responsibility for following school and lab rules pertaining to computer ethics.

GOAL 4 .
4. The student wil ivestigar educational and career opportunities in eonputer-related prifer ans.
4.1. Recognizes careers involving computer and the impact these careers have on society and the educati nal system.
4.1.1. The student identifies careers that irvolve computers directly (support, service; technical and scieritific careers; data management; programaing anälysis, etc.)
4.1.2. The student compares educationai requirements and oppertunities for careers that involve computers.

SIGN-UP FOR COMPUTER TIME DURING WEEK

NAI 12 \qquad
DATE \qquad
PER1OD \qquad $=$
ROGRAM \qquad

GRADIM SHEET

extra points: \qquad

| flowchart: | \cdots |
| :---: | :---: |
| documentation: | - |

trans?ation to BASIC:

other:

COMMEI. :

183

A Motivation Techniove in
Computer Programming*

Abstract

Theods. Kos a high school comput science teacher in Little Falls, New Jer recommends à technique he finds conducive to motivating stude to excel in his computer programming clāssēs. He establishes a fict ous software conpany where each student is to be employed as a dunic Programmer. Based upon the merit of his or her work, rach studen an earn a promotion to a more responsible position. Using cur nt classified ads; he determines the salaries for each position and creates a chart such as the one below.

$$
\text { Position } \quad \text { Employee } \quad \text { Salary }
$$

infor ation Systens Birector
Programiing Mgr.
Project teader
Systems Progranmer
Senior Analyst
Systems Analist
Programmer
Junior Programmer
75,000
\$60,000
$\$ 52: 000$
\$47,000
\$43,000
$\$ 33,000$
\$25,000
\$20;000

Programming
Instructor
\$1.2. $/ \mathrm{hr}$.
fach position has a pi sicuiar number of slots: Aócer éāon assigment is graded, à new promotion ch \because; based upon these marks, is poste on the bulletin bjaru, stowing each student's name in the appropriate position Mir. kino qlows the authors of the seven bes procrans for the first āsignant to move up to Programmer. The text promotion allows a maximum of x tic move inp tp Systems Analyst; ie room for six more people to ausance from Junior Programme io Programmer. The following round advances five to Senior Analyst, then four to Systc:s Progranimer, then three to Project leader, then two to Programing Manager, and finally one to Inforition Systems Director!

Test or quic results, class participātion and homework quality are used to break ties in assignment trades. Students advance only on the basis of quality work, and oily a limited niniober of higher prsitions are avaíāble - just like in the real business world.

Mr. Kosko has found students eager to work hārder so they can advance in position: All studerits' work improves with this system, as t'yy become more consc'jus of structured methodoiogy, program roudability, good documer ation ád accurate output. And curiosity about, the responsibilities of each job position éncourāgēs students to seek more information concerning computér cārēers. Good working
relations with others is emphasized so that a healthy and fun competition develops within the class that promotes continued cocperation as well among the students:
*"ricir To Motivate Sour Computer Programming Classes, " Theorore kusko, The Computing Teacher, Fébruary, 1985, page 33.
1.2

185

Thé Apple it series computers store each cháracter as àmeric code using the Americar Standard Code for information Interchange (ASCII). Codes 32-127 are the ASCII oude numbers that ar used for characters. (rodes 0-? 1 , used for various control functions are not snown here.)

To display the code mui, or a character, use the ASC function. To display the che acter orsponds to a code number, use the CHR $\$$ function.

82
R

| ASE:
 Code | Chanacter | $\begin{aligned} & \text { 4SCII } \\ & \text { Code } \end{aligned}$ | Charactor | ASCII Code | Character | ASCTI Code | Character |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | | 56 | 8 | EO | F | 104 | h |
| 3 | ! | 57 | 9 | 81 | Q | 105 | i |
| 34 | 11 | 58 | : | 82 | R | 108 | j |
| 35 | \# | 59 | ; | 83 | S | 107 | k |
| 35 | $\$$ | 50 | | 84 | T | 108 | 1 |
| 3 | \% | 51 | = | 85 | \forall | 109 | m |
| 38 | 4 | 62 | | 86 | V | 110 | n |
| 32 | ' | 63 | ? | 87 | W | 111 | 0 |
| 40 |) | $6{ }^{6}$ | 5 | 88 | $*$ | 112 | - |
| 47 |) | 65 | A | 85 | Y | 113 | 3 |
| 42 | \div | 56 | is | 90 | z | 114 | r |
| 43 | , | 5. | \bigcirc | 91 | [| 115 | s |
| 44 | 5 | 68 | is | 92 | | 116 | \% |
| 45 | - | 69 | $-$ | 93 | ! | 117 | u |
| 46 | | 70 | | 94 | | i18 | v |
| 47 | 1 | \square | G | 95 | | 1 ± 9 | w |
| 48 | 0 | 72 | 4 | 36 | - | 120 | x |
| 49 | 1 | 73 | i | 97 | a | 121 | y |
| 50 | 2 | 74 | 3 | 98 | b | 122 | z |
| 51 | 3 | 75 | k | 99 | c | 19.3 | |
| 52 | 4 | 76 | 1 | 100 | σ | 124 | |
| 53 | 5 | 77 | M | 101 | e | 125 | |
| 54 | 6 | 78 | N | 102 | f | 126 | |
| $5 E$ | 7 | 79 | 0 | 103 | g | 12.7 | |

d: e fullowng ASCII codes represent characters that either are ch: ters at all: 32 monicors or princers or else are not visible (1. en); 46 (period); 94 (carēt); 95 (undérscöre); 96 (grave āccent); 126 (tilde); 127 (deletion symbol).
$1 \bar{\square}$
186

RESOURCES

199 18 8

RECOMMENDED tEXTBOOKS

(Listed within parentheses are schools who have used or are currently using the texioook.j

A Guide to Programming in Applesoft. Presley. Vo Nostrand Remold Company. 1984.

Advanced Structured BASIC. Clark and EâBarre. South-Westrun Publishing Company. 1985.

Apple B.ASIC. Häskēll. Prentice-Hall. 1982.
Apple files in BASIC. Miller. F ton Publishing Company. 1982.
BASIC = A First Course. Thompson. Charles E. Merrill. 1981.
BASIC = A Structured Approach. Kittner and Northeutt: Benjamin/ Cummings. 1985.

Basic BASIC Programing. Peluso, Bauer a nd DeBruzzi. Ad son. -Wesley. 1981.

BASIC For Students: With Applications. Tromietta. Addison-Wesiey 1981.

BASIC Programming for the Classroom Teacher. Miller, Cray and Santora. Teachers College Press. 1982.

BASIC Programming Using Structured Foduiēs. Baron. CBS Pubīishing. 1983.

Computer Fundamentals with BASIC Programming. Māndēi and Māidell. West Publishing Company. 1985.

Computer Programming in BASIC. Myers, Elswick, Hopfenspergèr and Pavlovich. Hoüghtoi Miffiin. 1986.

Computer programing in the BASIC Language. Golden.. Harcourt Brace Jovanovi 190.
 Waipahu)

Computers and Data Processing - Consents and Applicatio th Basic.
Mandeli. West Publishing Company. 1982.
Data file Proriamming i BASIC - A Solf-Teachino Guide. Finkē and Bran. John Wiley ard sons, inc. 1981.

Dat Processing - An Irtroduc with BASIC. Spencer. Binaries ... Merrill publishing ... any. 1982 .

Data Structures for Personal Computers: Langsom; Augenstein and Teneй ium. Prentice-Hâl, Inc. 1385 .

Fundamentals of BASIC Programming - A Structured Approach. Mandell and Mandell. West Publishing Company. 1985.
 Dublish-ing 1982.
'Schools: Mckinlcy, Kailuā)
Randomuction to Prooramming in Basi: le If/fle/tic. Bitere.
More TRS-80 BASIC: A Self-Teaching , Zamora and Albrecht.
John Wiley \& Sons, Inc. 1981.
(Schools: Moanalua)
Pract ing Programin on the Apple II/Ile. Märrāpodi; Budin and Guzmar: Random House, Inc. 1984.

Practicing Programming on the TRS-80. Marrapodi, Budin ard Guzinan: Random House, Inc: 1984.

Problem Solving and structured Programing in BASIC. Kofinen and Friedman: Addison-wesley. 1979.

Problem Solving with BASIC. Dillman. Holt, Rinehart and Winston. 1983.

Programming in Apple BASIC: Dieisí, Grossman and Tucciarone. CBS Eollege Publishing. 1984.

Publishing Company. 1983.
(Schools: Pearl City; Mrià? ur
Programming in BASIE: McRitchiē: Hōt, Rinehart and finston. $108 z$. (Schools: Farrington; Kalari;, Wâipahu)

Structüred BASIE: Elark and Drum: Southwestern Publishing Company. 1983.
(Schools: Kaimaki)
The Bāsics of BASIC: Gomez: Holt, Rinehare znd Winston. 1983.
The Minc Tool. Graham. West Pubiisting Company. 1983.
(Schools: Kajeer)
Using Computers: Elgarten, Posamentier and Moresh. ficison-Wesiey. 1984.
(Schools: Cāstle, Wàuriáe)

EENERA: (Applicā̄le mos mionmicrozonputers)
E S WORKBOOKS AND SERENGE BORKS).
BASIC Discoveries: Malune \& Johnson. Creative Pubiications. 1982.

Duplicating Masters - Exper \quad iging BASIC. Mulcahy. Miedia Materials; Inc: 1984:

Everybody's BASIC: Richarason: Meka Publishing Company. 1983.

Experiencing BASIC - Task Cards. Mulcahy: fiedia Materials, Inc. 1984.

Fis y BASIC Exercises: Lamoitier Syळex: 1980.

Hands-On BASIE. Pecknam: McGraw-Hili Pubitishing Company. 1984. (specify computer)

Hec: to Build a Program: Enmerichs: : thium Passe 1983.
Micros 1-10. Ruby and Roberts: d: Jocon Walsh: 1984.
Problems for Computer Solueion: Regr: Ereatiue omputing Press. 1979.

Problems for Computer Solutions Using BASas. Walke: Winthrop Publishers, Inc. EC80.

Problems Solving with the Eomputer: Henley \& Reniley: Media Ma Eerials Inc. 1983:

Problens for BASIC Discuveries: Johnson \& Maiont. Creative Publicurions. 1984.

Fructured Design ari Programming. MECC. 198\%.
Teaching BASIC: Thirty Lesson Plane, Activities and Quizzes Volume II, TRS-80 Models 11I, IV. Erickson \& Vonk. Learning Püblications, Inc. 1983.

The BAS Workbook. Schoman. Hayden. 1977.

GENERAL
SOFTWARE
Global Program Line Editor: Beagle Brother.
Practicing Programming; Redom House
Visible Bubble Sort; Softdisk Magazine

OTHER ELASSRO日M AIDS
MECC Computer Parts Kit; MEGE:
Quick Reference Guide 'specify the computer); John Wiley \& Sons. The BASIC Conversions Hand. OK for Apple, TRS-80 and PET Users. Brain, et. ai. Hayden. 1982:

APPLE
BOOKS (WORKBOOK AND REFERENCE BOOKS)
A Guide to Progrémming in Applesoft: Presley. Von Nostrand Reinhoíd Companny. 1984.

Apple Basic: Data File Programming: Finkel \& Brown: Creative publications.

Apple BASIC for Reston Fublishing Company, Inc. 1981

Apple Graphics Activities Handbock. Creative Pubiications. 1984:
Graphics Cookbook for the Apple. Wadsworth. Hayden.
Graphics Discoveries Books I and II. Johnson. Ereative Publications.

Practicing Frograming on the Apple IIfie. Marrapodi, Budin; Guzman. Rändom Hol ?, Inc. 1984.

Orogramming specià Projacis. MECc. 1984.
Spotight on Basic fnr the 4pnie Ir/IIellic. Fist and Rohman. Random House, Inc 998.

The Apple Program Factory. stewart. Mçāaw itil 1985.
The BASIC Handbook. Lien. Complisoft Publishing. 1985.

BASIC Tutor Series: Advanced Topics; Educational Courseware
BASIC Tutor Series: Crezting Music and Sounds; Educational Courseware

BASIC Tutor Series: Graphics Commands; Educational Courseware BASIC Tutor Series: Shapes and Pictures; Educational Courseware BASIC Tutor Series: Text. File Commands; Educational Courseware BASIC Tutor Series: Set; Educational Courseware Computer Graphics; Innovative Programming Associates Hands on BASIC Programming; Peachtree Software; Inc. Hi-Res Secrets Graphics Applications Systems; Avant-Garde How to Program in Applesoft Basic; Hayden Software Let's Explore BASIE; Media Materials; Ine.

Programming Animation \& Graphics for the Apple; Media Materials, inc.

Scott; Foresman Computer Literacy Courseware Series; Scott, Foresman and Gompany

The Basies of BASIE; Focus Media
Vísible Bubble Sort Program; Softdisk Māgãine, P. O. Box 30008 Shreveport; tA 71130-0008; (Prçgram written by Thomás G. Pink)

BOOKS (WORKBOOKS AND REFERENCE BOOKS)
BASIC Exercises for the IBM-PC. Lamoitier. Sybex. 1982.
Graphics Programing on the IE Personal Computer. Volkstorf: Prentice-Hall, Inc. 1984.

Hands-On BASIC for the IBM-PC. Peckham. McGraw-Hill Book Company. 1983.

Programming Special Projects. MECC. 1984.
Programming the IBM Personal Computer: BASIC. Granam. Holt, Rinehart and Winston. 1982.

SOFTWARE
Beyond Basic BASIC; Personally Developed Sōftware
The Basics of BASIC; Focus Media

BOOKS (WORKBCOKS AND REFERENEE BOOKS)
A Guī̀ $\overline{\text { to }}$ Programming in Level II BASIE-TRS-80: Presley. Von Nostrand Reinhold Company. 1982.

Advanced BASIC. Radio Shack. 1982.
BASIC Disk $1 / 0$ Faster \& Better. Rosenfelder. I. $\overline{\mathrm{i}} . \overline{\mathrm{A}} 1982$.
Business Programming Applications. Barden. Radic $\overline{1} \overline{\mathrm{I}} \mathrm{\bar{c}}=\mathrm{k}$. 1982.
Structured Program Design with TRS $=\overline{8} \overline{0}$ BASIC. Dwyer \& \bar{C} itchfiēld. McGraw Hill Book Company. 1984.

TRS-80 Graphics. Griflo \& Robertson. William C. Brcin cimpañ. 1981.
 Sons, Inc. 1980.

RECOMMENDED PERIODICALS

GENERAL
BYTE; 70 Main Street, Peterborough; NH 03458
Classroom Computer Learning; 5615 W. Cermak Road; Cicerc; IL.; 60650
Education Computer News; 1300 N. 17th Street, Arlington VA 22209
Electronic Learning; Scholastic Iric., P.0. Böx 645; Lyndhurst; Nu 07071-9986

Infolcrid; P.0. Box 1019; Southeastern; PA 19398-9981
Personal Computing; P.0. Box 2941 , Boulder, Cō. 80321
Teaching and Computers; Scholastic Inč.; P.0. Box 645; Lyndhurst; Nj 07C71-9986
T. H. E. Journā; P.0. Bōx 15126; Sañ ta Aña, CA 9¢705-0126

The Computing Teacher; University of Oregon; 1787 Agate Street; Eugene; OR 97403-1923

PERIODICALS FOR APPLE COMPHTER
At; P.O. Box 2964 , Bouider, CO 80321
Apple Education News; 20525 Mariani Avenue, Cupertino, CA 95014
Incider; P.0. Box 911, Farmingdale, NY 11737
Nīb̄ie; P.0. Box 325, Lincoln, MA 01773

PERIODICALS FOR IBM PC

PC = The Independent Guide; 1 Pärk Avenue - 4th Floor, New York, NY 10016

PC WEEK; 1 Park Avenue - 4th Floor; New York; NY 10016
PC WORLD; P.O. Box 6700; Bergenfièid; Nj 07621

PERLOLICRLS FOR TRS-80 COMPUTER
80 Micro; CW Communications; 80 Pine Street; Peterborough; NH 03458

Ph: 732-2824

AND WHAT OF THE :UTURE?
Films Incorporated, 1981
40 mino; J- $\mathrm{H}^{\text {F }}$
Will the recent developments in electronic miurocircuicry resuit in a better or worse iffe for the average person?
Will people lose jobs onve tiought secure? Will the technology be used tc repiace people on monotonous or dangerous jobs? Visits to the Washington D.C: Metro (subway), a Dallas supermarket, and a Scottish hospital illustrate the benefits and problems.

THE COMPUTER AND YOU - AN INTRODUCTION
Hāndel Film Cōrporation; 1983
16 miñ; E-j
A primer for computer operations designed for audiences who have no prior knowledge in this field. The computer terms come to life by watching à student developing à program about the states in the USA and the provinces of Canada.

COMPIJTER GOLOR GENERATIONS
United States Department of Energy, 1972
23 min. ; J-H C
Discusses new techniques in computer technology which virtually eliminate the extra cost of color in computer displays. Includes research on thermonuclear problems, lasers, engineering and three dimensional problems.

GOMPUTER FLUID DYNAMICS
United States Department of Energy, 1969
24 miñ: J - HC
Demonstrates the power of today's giant electronic computers for solving problems that previously were impractical to undertake. Presents à wide range of fiuid flow problems, shows several examples of fluid flow calculations, ard describes how compater calculations are accompl ished.

COMPUTER: TOOL FOR THE FUTURE
National Geographic, 1984
23 min.; J-H T
The film begins with the human need to compute, surveying several computing devices that preceded the chip and focusing on significant computer applications. Computer careers are considered-everything from the military to music. This film stresses the importance of computers in our modern society.

| 7682 | COMPUTERS AND THE EUTURE
 Time-Life Media, 1982
 30 min.; J-H
 Combining documentáry tectiniques witn vignettēs, the film
 e ipl es our growing repationship with communications
 cuchnologies such às intēräctive computers, cable
 television and video discs. The program explores the effect of tilis new media form on the way we live, work and play. Futurrlogist feter Schwartz is host. |
| :---: | :---: |
| 7798 | COMPUTERS: THE FRIENDLY INVASION
 Wa? Disney Educati nal Media Compariy, 1382
 20 min.; E-H
 Computer graphics and scenes from the D sney feature "Tron"
 iliustrate some computer applicat:ons is an entertaining film that introduces students to a futire resource. They are inicoduced to how computers work, the mary task they can performi, and the oppo:tunities they offer in science and the arts. |
| 7668 | IOMPUTERS: TOOLS FOR PEOPLE
 Chürchill Films, 1983
 22 min.; E-H T
 Shows how computers are used in many ways: for file management; control of other machines; support of creative work; and for mathematical tasks including modeling. Demorstrates how applications are developed through research, flowcharting, programming and debugging. Emphasizes the human responsibility for computer performance and the excitement of people creating their own tools. |
| 7922 | DON'T BOTHER ME, I'M LEARNING:
 AUVENTURES IN COMPUTER EDUCATION:
 MGHT, 1981
 24 min.; E-H T
 This motivating film demonstrates uses of a computer in a classroom: Teachers; parents and students all eagerly discuss the vast uses of the computer: |
| 7473 | MIND MACHINES; THE PARTS 1 \& 1 I
 Time-Lífe Media; 19"9
 57 min.; H C
 The controversy surrounding artificial intelligence is examined. Computer fundamentals are explained and compared to human intelifigence. Limitation of computers to memory. and calculations functions are used to argue the nature of humã intelligence which inciudes judgement, common sense, etc. |
| 7707 | ```NOw THE CHIPS ARE DOWN, PARTS I & II Films Inco;porated; 1981 50 miñ: j-H & A T Microprocessors smaller than a postage stamp hāve the power``` |

of room-sized computers of a generation ágo. We hear a machine that can read aloud, see a driverless tractor and a warehouse that needs no staff among the samples of the wonders created by cheap computer power. We aiso learri how microcomputers are made, and hear predictions of the future changes.

WELGOME TO THE FUTURE: COMPUTERS IN THE CIASSROOM: FI, 1982
28 miñ:; C T In plain language, this film introduces teachèrs to computer literacy: programming lánguagēs, software and the variety of ways computers cān be used in schools, such as computer assisted instruction. Thiss film helps demystify computers and shows how teāchérs and students can beccme friends with a māchine.

Feodes for giade or ábility levels àre:
$E \equiv$ elementary; $J=$ junior high; $H \equiv$ high school; $C=$ college;
$A \equiv$ adult; $T=$ teacher.

TECHNICAL ASSISTANC:. CENTER
 3645 Walalae Avenue, Room B=6 Honoluilu, Hi 96816

Ph: 735=2825

| 1/68-2 | GOMPUTER SHOW \#2, THE
 Oceanic Cablevision, Inc., 1984
 30 mini: Eolor (The Computer Show); J-H A
 Continuation of stiow \#1 with emphasis on the care and maintenance of computers, use of word processors and printers. |
| :---: | :---: |
| 1804-1 | GOMPUTER SHOW \#3, THE
 Oeeanic Cablevision: Inc., 1984
 30 min., Color (The Computer Show); J=H A
 Bavid Kóbāshigawā of Rādio Shack demonstrates the use of a computer spreādsheēt. The film défines some computer lānguages, givès computè cäre tips and describes various types of printèr päper. |
| 1854-1 | COMPUTER SHOW \#4, THE
 Oceānic Cablēvision, Inc., 1984
 30 min., Color (The Computer Show); J-H A
 Demonstrātes computer programming in BASIC and explains some of its terms. Describes what computers can do and how they woik. Explores the serious problem of software piracy. |
| 1854-2 | COMPUTER SHON \#5, THE
 Oceaanic Cablēvision, Inc., 1984
 30 min., Color (The Computer Show); J-H A
 Briēfly demonstrates features of a computer operating system designed for multi-user business applications; the Northistar "Dimension" system; this is followed by a demonstration of software called "Color Paint." Both programs are designed for IBM PC computers. |
| 1851-2 | COMPUTER SHOW \#6, THE
 Oceanic Cablevision; Inc., 1984
 30 min., Color (The Computer Show); j-H A
 Minidocumentaries in this program feature computers:
 computerized music; computers in designing and
 manufacturing, a young science fair winner who is a computer whiz; a new way of notating dance, and the work of robots; present and future |
| 1282=1 | COMFUTERS
 Hawaí \bar{i} Publíc Télevision, 1980
 60 mins.; Color (Dialog); $H \in A$
 Presents a group of compucer experts who discusses the use of computers, their advantages and possible disadvantages. The question is-what is the future of computers, will they compete with people for jobs? NOT FOR CATV USE. |
| 1278-4 | COMPUTERS
 Hawa í \bar{j} Pubijc Television, 1980
 10 mins:, Color (Dialog); $H \in A$
 Edited version of "Computers" without the panel
 discussion. Shows only the mini-documentary of the topic up for discussion. |

| 0112-1 | COMPUTERS
 Hawai'i Public Television, 1982
 59 Mins., Color (Dialog); H C A T
 This program examines the numerous functions and disadvantages of having personal comouters. It also describes the different brands of computers and their most éffective usé, éspecially by the àvēràge pèrson. NOT FOR CATV USE. |
| :---: | :---: |
| 0088=2 | COMPUTERS |
| | Hawài'i Püblic Tēlevision, 1982 6 min., Color (Dialog); HCA T |
| | Edited version of "Computérsi" without the panel discussion Shows only the mini=documentary of the topic up for |
| 1756-1 | COMPLITERS |
| | WETA=TV, Washington, D.C., 1983 |
| | 26 min., Color (Spaces); J-H |
| | Minidocumentaries in this program feature computers: computerized music, computers in designing and |
| | hianufacturing, a young science fair winner who is a computer whiz, a new way of notating dance, and the work |
| | of robots, present and future. |
| R129-1 | COMPUTERS AND THE FUTURE |
| | Time-Life Video, 1982 |
| | 30 mins:, Coior; J-H A |
| | Combining documentary techniques with vignettes; the film explores our growing relationship with communications |
| | technologies such as interactive computers; cable |
| | television and media forms on the way we live, work and play. Futurologist Peter Schwartz is host. LOAN ONLY. |
| | NOT FOR CATV USE. NOT AVAILABLE TO PUBLIC LİBRARIES. |
| | DATABASE PROCESSING SYSTEMS (COMPUTERS AT WORK SERIES-\#10) |
| | BNA Communications; Inc. 1980 30 mins; Color; H A |
| | A banking application serves as a case study to define the |
| | characteristics of database processing and show how it |
| | differs from file processing. A limited number is avail- |
| | ābie. If interested, cali Computer Education; Office of Instructional Services; at 395-8916. |
| 1664-2 | DATA PROCESSING |
| | Kapio iolani Community College 1983 |
| | 12 mins-; Color (A Career in focus); j-H |
| | In the bus iness world, computers play a major role in data |
| | processing, accounting; and record keep ing. This program |
| | describes the duties and work of computer operators, |
| | computer programmers; data entry clerks and control clerks. |
| | KCf. offers a two-year course in computer education. |

| 1061-1 | EVOLUTION: COMPUTERS, YESTERDAY AND TGOAY (COMDUTERS AT WORK SERIES=\#1)
 BNA Cominnications, Inc., 1983
 30 min.; $\mathrm{J}=\mathrm{H} A$
 This film presenis the history of four generations of computers. Included are the people and the commates that developed theili. |
| :---: | :---: |
| 1015-1 | FILE STRUCTURES BASIC POUERS PROGRAM 8
 University of California, EMC; 3982
 19 mins., Color; H A
 Continues the discussion of input and output: but with einiphasis on external storage of prograns and data on disk and tape units. Concludes by examining several populir microcomputer operating systems: |
| $\overline{\mathrm{R}} \overline{\mathrm{C}} \overline{6}=1$ | FITTING OUT
 Great Plais Nationalo 1980
 15 mins.; Color (Business Computing.- Cut Bown to Size); A Offers guidelines on determining the capabilities of computer systems (size, storage mainenance). toall omy. NOT FOR CATV USE. NOT AYAILABLE TG PUBE EEBRARIES. |
| L013-1 | HARDWARE A SOFTWARE (CUMFUTERS AT WORK SERIES-H3)
 BNA Communications; Inc:; 1930
 30 mins., Color; J-H A
 In-depth look at hardware and software, memory and data storage, programs, languages and operating systems. High= lighted by a visii to a modern computer cent \because. |
| R195-1 | MFASURING UP
 Great Plains Nationā, 1980
 15 mins., Color (Business Computing.. Cut Down to Size); A Detaijs applications and types of smal: computers and the integration into a business. LOAN UNLY: NOT FOR CATV LSE. NOT AVAILABLE TO PUBLIC LIBRARIES. |
| L014-1 | SUBSCRIPTED VARIABLES AND ARRAYS = EASIC POWERS PROGRAM 5
 University of California, EMC, 1382
 22 mins., Color; H A
 Introduces the use of dimensioned variables, which contain
 more than one set of values or groups oi characters.
 Concludes by showing how to design a uséful "bubtblēsort" routine. |
| 1593-1 | TIC - Index to Energy
 U.S. Department of Energy, 1977
 6 min., Color; C A
 Describes the Technical Information Center (TIC) o: the Department of Energy at Oak Ridge, Tēnnēsisee. Thè computerized facility gathers, abostractss and cácalogues technical reports around the world. This material is evaluated and becomes a permanent part of à data bank of technical and scientific energy infurmation. |

```
R1S8-i UNDERSTANDING SOFTWARE
Great Plãins Nationāl, 1980
16 mins:, Color (Business Computing...Cut Down to Size); A
Discu⿱sses types, applications and the choosing of software.
LOAN ONEY: NOT FOR CATV USE: NOT AVAILABLE TO PLBLIC
LIBRARIES.
1745-1 WHY IN THE WCRLE HZ45
WNET & Sātellite Educātion Services; Inc.; 1984
30 minin., Color (Why in the World); J H A
Topic: Comyuters and the changes they bring to
Americā=-how people live and work. Guest: John F. Akers,
President of IBM Corporation.
```

*Codes for grade or ability levels are:
$E=$ eiementary; $J=$ junior high; $H=$ high school; $C=$ cōllege;
$A=$ adult; $T=$ teacher.

[^0]:
 *
 $\bar{\star}$
 Reproductions supplied by EDRS are the best that can be made

[^1]: *From Programming in Apple BASIC by John J. Dielsi, Elairie S: Grossman, Juhn P. Tucciarone; page 258; copyright (c) 1984 by CBS College Publishing; New York; New York. Reproduced with permission.
 **From A Guide to Programming in Applesoft by Bruce Presley, page 4.20; copyright (c) 1584 by Lawrenceville Press; Lawrenceville; New Jersey: Reproduced with permission.

[^2]: *From Programming in Applē BASIC by John J. Diēisí, Elāinē S. Grosismãn, John P. Tưciārone, page 256-257; copyright (c) 1984 by CBS Collegē Publishing, Nēw York, Nēw York. Rēproduced with permission.

[^3]: *From Evervbơdy's BASIC by Kay Richardson; pages 61-62; 64; copyright (c) 1983 by Meka Publishing Co., Indianapolis; Indiana: Reproduced with permission.

[^4]: *From Evērybody's BASIC by Kāy Richārdson; pages 65-68; copyright (c) 1983 by Mēkā Publishing Co., Indianapolis, Indiana. Reproduced with pēmission.

[^5]: *Further reproduction is prohibited. See footnote on page 77.

[^6]: *From Experiencing BASIC - Task Cards by Michas i Mulcahy; copyright (c) 1984 by Media Materials, Inc.; Baltimore; Maryland: Reproduced with permission.

[^7]: *From Graphics Discoveries -- Book II by Jerry Johnson, pages 23-24, 29; copyright (c) 1984 by Ereative Publications; Palo Alto, California. Reproduced wit: permission.

[^8]: *Samuel E. Rhoads; Course Guide for Advariced Placement Computer Science, Department of Education; State of Hawai; (1985), pāges XIII-4 to XIII-7.

